Training data influence analysis and estimation: a survey

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Pub Date : 2024-03-29 DOI:10.1007/s10994-023-06495-7
Zayd Hammoudeh, Daniel Lowd
{"title":"Training data influence analysis and estimation: a survey","authors":"Zayd Hammoudeh, Daniel Lowd","doi":"10.1007/s10994-023-06495-7","DOIUrl":null,"url":null,"abstract":"<p>Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training’s underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data’s influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"43 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06495-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Good models require good training data. For overparameterized deep models, the causal relationship between training data and model predictions is increasingly opaque and poorly understood. Influence analysis partially demystifies training’s underlying interactions by quantifying the amount each training instance alters the final model. Measuring the training data’s influence exactly can be provably hard in the worst case; this has led to the development and use of influence estimators, which only approximate the true influence. This paper provides the first comprehensive survey of training data influence analysis and estimation. We begin by formalizing the various, and in places orthogonal, definitions of training data influence. We then organize state-of-the-art influence analysis methods into a taxonomy; we describe each of these methods in detail and compare their underlying assumptions, asymptotic complexities, and overall strengths and weaknesses. Finally, we propose future research directions to make influence analysis more useful in practice as well as more theoretically and empirically sound.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
培训数据的影响分析和估计:一项调查
好的模型需要好的训练数据。对于参数过高的深度模型来说,训练数据与模型预测之间的因果关系越来越不透明,也越来越难以理解。影响分析通过量化每个训练实例对最终模型的改变程度,部分揭示了训练的潜在交互作用。在最坏的情况下,精确测量训练数据的影响是非常困难的;这就导致了影响估计器的开发和使用,而影响估计器只能接近真实的影响。本文首次对训练数据的影响分析和估计进行了全面研究。首先,我们对训练数据影响的各种定义进行了形式化,有些定义甚至是正交的。然后,我们将最先进的影响分析方法归纳为一个分类法;我们详细描述了每种方法,并比较了它们的基本假设、渐近复杂性和总体优缺点。最后,我们提出了未来的研究方向,以使影响分析在实践中更加有用,在理论和经验上更加合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
期刊最新文献
On metafeatures’ ability of implicit concept identification Persistent Laplacian-enhanced algorithm for scarcely labeled data classification Towards a foundation large events model for soccer Conformal prediction for regression models with asymmetrically distributed errors: application to aircraft navigation during landing maneuver In-game soccer outcome prediction with offline reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1