The Growing Class of Novel RNAi Therapeutics

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Molecular Pharmacology Pub Date : 2024-05-06 DOI:10.1124/molpharm.124.000895
Gavin M. Traber, Ai-Ming Yu
{"title":"The Growing Class of Novel RNAi Therapeutics","authors":"Gavin M. Traber, Ai-Ming Yu","doi":"10.1124/molpharm.124.000895","DOIUrl":null,"url":null,"abstract":"The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza{trade mark, serif}), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro{trade mark, serif}), lumasiran (Oxlumo{trade mark, serif}), inclisiran (Leqvio{trade mark, serif}), vutrisiran (Amvuttra{trade mark, serif}), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari{trade mark, serif}), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term \"RNAi\" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action.","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.124.000895","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical use of RNA interference (RNAi) molecular mechanisms has introduced a novel, growing class of RNA therapeutics capable of treating diseases by controlling target gene expression at the posttranscriptional level. With the newly approved nedosiran (Rivfloza{trade mark, serif}), there are now six RNAi-based therapeutics approved by the United States Food and Drug Administration (FDA). Interestingly, five of the six FDA-approved small interfering RNA (siRNA) therapeutics [patisiran (Onpattro{trade mark, serif}), lumasiran (Oxlumo{trade mark, serif}), inclisiran (Leqvio{trade mark, serif}), vutrisiran (Amvuttra{trade mark, serif}), and nedosiran] were revealed to act on the 3'-untranslated regions of target mRNAs, instead of coding sequences, thereby following the common mechanistic action of genome-derived microRNAs (miRNA). Furthermore, three of the FDA-approved siRNA therapeutics [patisiran, givosiran (Givlaari{trade mark, serif}), and nedosiran] induce target mRNA degradation or cleavage via near-complete rather than complete base-pair complementarity. These features along with previous findings confound the currently held characteristics to distinguish siRNAs and miRNAs or biosimilars, of which all converge in the RNAi regulatory pathway action. Herein, we discuss the RNAi mechanism of action and current criteria for distinguishing between miRNAs and siRNAs while summarizing the common and unique chemistry and molecular pharmacology of the six FDA-approved siRNA therapeutics. The term "RNAi" therapeutics, as used previously, provides a coherently unified nomenclature for broader RNAi forms as well as the growing number of therapeutic siRNAs and miRNAs or biosimilars that best aligns with current pharmacological nomenclature by mechanism of action.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不断发展的新型 RNAi 疗法
RNA 干扰(RNAi)分子机制的临床应用引入了一类新的、不断发展的 RNA 疗法,该疗法能够通过在转录后水平控制目标基因的表达来治疗疾病。加上新近获批的奈多西兰(Rivfloza{商标,衬线}),目前美国食品和药物管理局(FDA)共批准了六种基于 RNAi 的疗法。有趣的是,FDA 批准的六种小干扰 RNA(siRNA)疗法中,有五种[patisiran(Onpattro{商标,衬线})、lumasiran(Oxlumo{商标,衬线})、inclisiran(Leqvio{商标,衬线})、vutrisiran(Amvloza{商标,衬线})和 vutrisiran(Amvloza{商标,衬线})、vutrisiran (Amvuttra{trade mark, serif})和 nedosiran]被发现作用于目标 mRNA 的 3'- 非翻译区,而不是编码序列,从而遵循了基因组衍生的微 RNA(miRNA)的共同作用机制。此外,FDA 批准的三种 siRNA 治疗药物[patisiran、givosiran(Givlaari{商标,衬线})和 nedosiran]通过近乎完全的碱基对互补而不是完全的碱基对互补来诱导靶 mRNA 降解或裂解。这些特点以及以前的研究结果混淆了目前区分 siRNA 和 miRNA 或生物仿制药的特征,因为它们在 RNAi 调控途径中的作用是一致的。在此,我们讨论了 RNAi 的作用机制以及目前区分 miRNA 和 siRNA 的标准,同时总结了六种获得 FDA 批准的 siRNA 治疗药物的共同和独特化学与分子药理学。先前使用的 "RNAi "疗法一词为更广泛的 RNAi 形式以及日益增多的治疗用 siRNA 和 miRNA 或生物仿制药提供了一个连贯统一的术语,最符合当前按作用机制划分的药理学术语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
期刊最新文献
Mechanism-based inactivation of human aldehyde oxidase by erlotinib: Mechanistic insights from structural analogs and molecular docking. Transient receptor potential vanilloid 3 activation accelerates keratinocyte migration in vitro but not dermal wound healing in vivo. Predictive modeling and functional characterization of the ceRNA regulatory network in cisplatin resistance of non-small cell lung cancer. Inhibition of constitutive activity of the atypical chemokine receptor 3 by the small-molecule inverse agonist VUF16840. Introduction of a single carboxylic acid converts the cyclic oligomeric depsipeptide ent-verticilide from a ryanodine receptor 2 (RyR2) inhibitor to RyR2 activator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1