Near-wall flow characteristics in pipe bend dense slurries: Optimizing the maximum sliding frictional power

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-05 DOI:10.1016/j.ijsrc.2024.04.002
Pankaj Kumar Gupta , Niranjan Kumar , Ram Krishna
{"title":"Near-wall flow characteristics in pipe bend dense slurries: Optimizing the maximum sliding frictional power","authors":"Pankaj Kumar Gupta ,&nbsp;Niranjan Kumar ,&nbsp;Ram Krishna","doi":"10.1016/j.ijsrc.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>In conveying concentrated liquid–solid mixtures in pipelines oriented horizontally, gravitational settling promotes a concentration-rich layer of solids at the pipe invert that degrades the wall due to sliding (abrading) action against the wall. The current study investigates near-wall flow field characteristics and then obtains flow and geometry conditions using a response surface methodology (RSM) that minimizes the maximum sliding frictional power developed in the vicinity of a 90° horizontal bend for transporting a dense solid–liquid mixture. The liquid–solid flow field is mathematically modeled with a Eulerian–Eulerian approach using the realizable <span><math><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></math></span> model with standard wall functions for turbulence modeling. The effect of several operating parameters such as solid concentration, mixture velocity, particle sizes, pipe diameters, and bend ratios on the near-wall flow field in the bend reveals useful insight relevant to the bend wall degradation by solid particles. A reduction of 28% in the maximum sliding frictional power is achieved with the optimized flow conditions within the operating range considered. The novel approach could be utilized in an apriori estimation of the erosion in bends for any particle-pipe wall material combination in the hydro transport of dense solids.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627924000362/pdfft?md5=a709cbb88702256a5d3b54aa68ac920e&pid=1-s2.0-S1001627924000362-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627924000362","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In conveying concentrated liquid–solid mixtures in pipelines oriented horizontally, gravitational settling promotes a concentration-rich layer of solids at the pipe invert that degrades the wall due to sliding (abrading) action against the wall. The current study investigates near-wall flow field characteristics and then obtains flow and geometry conditions using a response surface methodology (RSM) that minimizes the maximum sliding frictional power developed in the vicinity of a 90° horizontal bend for transporting a dense solid–liquid mixture. The liquid–solid flow field is mathematically modeled with a Eulerian–Eulerian approach using the realizable kε model with standard wall functions for turbulence modeling. The effect of several operating parameters such as solid concentration, mixture velocity, particle sizes, pipe diameters, and bend ratios on the near-wall flow field in the bend reveals useful insight relevant to the bend wall degradation by solid particles. A reduction of 28% in the maximum sliding frictional power is achieved with the optimized flow conditions within the operating range considered. The novel approach could be utilized in an apriori estimation of the erosion in bends for any particle-pipe wall material combination in the hydro transport of dense solids.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弯管致密泥浆的近壁流动特性:优化最大滑动摩擦力
在水平方向的管道中输送浓缩的液固混合物时,重力沉降会在管道入口处形成富含浓度的固体层,由于对管壁的滑动(磨损)作用,管壁会发生退化。当前的研究调查了近壁流场特征,然后使用响应面方法(RSM)获得了流动和几何条件,从而最大限度地减小了输送高密度固液混合物时在 90° 水平弯管附近产生的最大滑动摩擦力。液固流场采用欧拉-欧拉方法进行数学建模,使用可实现模型和标准壁面函数进行湍流建模。固体浓度、混合物速度、颗粒大小、管道直径和弯管比等几个运行参数对弯管内近壁流场的影响揭示了固体颗粒对弯管壁降解的有益影响。在考虑的工作范围内,通过优化流动条件,最大滑动摩擦力降低了 28%。在高密度固体的水力传输中,这种新方法可用于对任何颗粒-管壁材料组合的弯道侵蚀进行先验估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1