Sorption of Radium-226 on Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-07 DOI:10.1134/S1061933X23601348
A. A. Vozniakovskii, A. P. Voznyakovskii, S. V. Kidalov, A. P. Karmanov, N. G. Rachkova, N. D. Podlozhnyuk
{"title":"Sorption of Radium-226 on Few-Layer Graphene Synthesized under Conditions of Self-Propagating High-Temperature Synthesis","authors":"A. A. Vozniakovskii,&nbsp;A. P. Voznyakovskii,&nbsp;S. V. Kidalov,&nbsp;A. P. Karmanov,&nbsp;N. G. Rachkova,&nbsp;N. D. Podlozhnyuk","doi":"10.1134/S1061933X23601348","DOIUrl":null,"url":null,"abstract":"<p>Human industrial activity is accompanied by the formation of vast volumes of water contaminated with radionuclides, including radium-226, which create serious danger to people. Graphene nanostructures are among the most promising materials for purifying water from radionuclides. This work has been devoted to investigating the efficiency of few-layer graphene synthesized under conditions of self-propagating high-temperature synthesis from cellulose and wastes of the woodworking industry (technical lignin, tree bark) for purifying water from radium-226. The key advantage of the method chosen for synthesis of few-layer graphene is the possibility to synthesize large volumes of the material at an acceptable cost, which is extremely important for industrial applications. It has been found that the synthesized samples of few-layer graphene can efficiently purify water from radium-226 (the degree of sorption is higher than 99%). It has also been shown that the degree of desorption upon repeated washing with water does not exceed 0.5%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X23601348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human industrial activity is accompanied by the formation of vast volumes of water contaminated with radionuclides, including radium-226, which create serious danger to people. Graphene nanostructures are among the most promising materials for purifying water from radionuclides. This work has been devoted to investigating the efficiency of few-layer graphene synthesized under conditions of self-propagating high-temperature synthesis from cellulose and wastes of the woodworking industry (technical lignin, tree bark) for purifying water from radium-226. The key advantage of the method chosen for synthesis of few-layer graphene is the possibility to synthesize large volumes of the material at an acceptable cost, which is extremely important for industrial applications. It has been found that the synthesized samples of few-layer graphene can efficiently purify water from radium-226 (the degree of sorption is higher than 99%). It has also been shown that the degree of desorption upon repeated washing with water does not exceed 0.5%.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自蔓延高温合成条件下合成的少层石墨烯对镭-226 的吸附作用
摘要 伴随着人类的工业活动,形成了大量受放射性核素(包括镭-226)污染的水,对人类造成严重危害。石墨烯纳米结构是最有希望净化水中放射性核素的材料之一。这项工作致力于研究在纤维素和木材加工业废料(工业木质素、树皮)自发热高温合成条件下合成的几层石墨烯在净化水中镭-226 的效率。选择这种方法合成少层石墨烯的主要优点是可以以可接受的成本合成大量材料,这对工业应用极为重要。研究发现,合成的几层石墨烯样品可以有效地净化水中的镭-226(吸附率高于 99%)。研究还表明,经水反复洗涤后,解吸程度不超过 0.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1