Submodular maximization and its generalization through an intersection cut lens

IF 2.2 2区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Mathematical Programming Pub Date : 2024-02-19 DOI:10.1007/s10107-024-02059-2
Liding Xu, Leo Liberti
{"title":"Submodular maximization and its generalization through an intersection cut lens","authors":"Liding Xu, Leo Liberti","doi":"10.1007/s10107-024-02059-2","DOIUrl":null,"url":null,"abstract":"<p>We study a mixed-integer set <span>\\(\\mathcal {S}:=\\{(x,t) \\in \\{0,1\\}^n \\times \\mathbb {R}: f(x) \\ge t\\}\\)</span> arising in the submodular maximization problem, where <i>f</i> is a submodular function defined over <span>\\(\\{0,1\\}^n\\)</span>. We use intersection cuts to tighten a polyhedral outer approximation of <span>\\(\\mathcal {S}\\)</span>. We construct a continuous extension <span>\\(\\bar{\\textsf{F}}_f\\)</span> of <i>f</i>, which is convex and defined over the entire space <span>\\(\\mathbb {R}^n\\)</span>. We show that the epigraph <span>\\({{\\,\\textrm{epi}\\,}}(\\bar{\\textsf{F}}_f)\\)</span> of <span>\\(\\bar{\\textsf{F}}_f\\)</span> is an <span>\\(\\mathcal {S}\\)</span>-free set, and characterize maximal <span>\\(\\mathcal {S}\\)</span>-free sets containing <span>\\({{\\,\\textrm{epi}\\,}}(\\bar{\\textsf{F}}_f)\\)</span>. We propose a hybrid discrete Newton algorithm to compute an intersection cut efficiently and exactly. Our results are generalized to the hypograph or the superlevel set of a submodular-supermodular function over the Boolean hypercube, which is a model for discrete nonconvexity. A consequence of these results is intersection cuts for Boolean multilinear constraints. We evaluate our techniques on max cut, pseudo Boolean maximization, and Bayesian D-optimal design problems within a MIP solver.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"111 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02059-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

We study a mixed-integer set \(\mathcal {S}:=\{(x,t) \in \{0,1\}^n \times \mathbb {R}: f(x) \ge t\}\) arising in the submodular maximization problem, where f is a submodular function defined over \(\{0,1\}^n\). We use intersection cuts to tighten a polyhedral outer approximation of \(\mathcal {S}\). We construct a continuous extension \(\bar{\textsf{F}}_f\) of f, which is convex and defined over the entire space \(\mathbb {R}^n\). We show that the epigraph \({{\,\textrm{epi}\,}}(\bar{\textsf{F}}_f)\) of \(\bar{\textsf{F}}_f\) is an \(\mathcal {S}\)-free set, and characterize maximal \(\mathcal {S}\)-free sets containing \({{\,\textrm{epi}\,}}(\bar{\textsf{F}}_f)\). We propose a hybrid discrete Newton algorithm to compute an intersection cut efficiently and exactly. Our results are generalized to the hypograph or the superlevel set of a submodular-supermodular function over the Boolean hypercube, which is a model for discrete nonconvexity. A consequence of these results is intersection cuts for Boolean multilinear constraints. We evaluate our techniques on max cut, pseudo Boolean maximization, and Bayesian D-optimal design problems within a MIP solver.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
次模态最大化及其通过交叉切分透镜的广义化
我们研究了子模最大化问题中出现的混合整数集合(\mathcal {S}:=\{(x,t) \in \{0,1\}^n \times \mathbb {R}: f(x) \ge t\}\) ,其中 f 是定义在 \(\{0,1\}^n\) 上的子模函数。我们使用交割来收紧 \(\mathcal {S}\) 的多面体外近似。我们构建了 f 的连续扩展 \(bar{textsf{F}}_f\),它是凸的,并且定义在整个空间 \(\mathbb {R}^n\) 上。我们证明了\(\bar{textsf{F}}_f)的外延({{\textrm{epi}\,}}(\bar{textsf{F}}_f)是一个\(\mathcal {S}\)-free集合、并描述包含 ({{\textrm{epi}\,}}(\bar{textsf{F}}_f))的最大 (\mathcal {S}\)-无集合的特征。我们提出了一种混合离散牛顿算法来高效精确地计算交集切分。我们的结果被推广到布尔超立方体上的亚模态-超模态函数的超图或超级集,这是离散非凸模型。这些结果的一个结果就是布尔多线性约束的交割。我们在 MIP 求解器中对最大切割、伪布尔最大化和贝叶斯 D 优化设计问题评估了我们的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Programming
Mathematical Programming 数学-计算机:软件工程
CiteScore
5.70
自引率
11.10%
发文量
160
审稿时长
4-8 weeks
期刊介绍: Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.
期刊最新文献
Did smallpox cause stillbirths? Maternal smallpox infection, vaccination, and stillbirths in Sweden, 1780-1839. Fast convergence to non-isolated minima: four equivalent conditions for $${\textrm{C}^{2}}$$ functions Complexity of chordal conversion for sparse semidefinite programs with small treewidth Recycling valid inequalities for robust combinatorial optimization with budgeted uncertainty Accelerated stochastic approximation with state-dependent noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1