Determined Multichannel Blind Source Separation with Clustered Source Model

Jianyu Wang, Shanzheng Guan
{"title":"Determined Multichannel Blind Source Separation with Clustered Source Model","authors":"Jianyu Wang, Shanzheng Guan","doi":"arxiv-2405.03118","DOIUrl":null,"url":null,"abstract":"The independent low-rank matrix analysis (ILRMA) method stands out as a\nprominent technique for multichannel blind audio source separation. It\nleverages nonnegative matrix factorization (NMF) and nonnegative canonical\npolyadic decomposition (NCPD) to model source parameters. While it effectively\ncaptures the low-rank structure of sources, the NMF model overlooks\ninter-channel dependencies. On the other hand, NCPD preserves intrinsic\nstructure but lacks interpretable latent factors, making it challenging to\nincorporate prior information as constraints. To address these limitations, we\nintroduce a clustered source model based on nonnegative block-term\ndecomposition (NBTD). This model defines blocks as outer products of vectors\n(clusters) and matrices (for spectral structure modeling), offering\ninterpretable latent vectors. Moreover, it enables straightforward integration\nof orthogonality constraints to ensure independence among source images.\nExperimental results demonstrate that our proposed method outperforms ILRMA and\nits extensions in anechoic conditions and surpasses the original ILRMA in\nsimulated reverberant environments.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The independent low-rank matrix analysis (ILRMA) method stands out as a prominent technique for multichannel blind audio source separation. It leverages nonnegative matrix factorization (NMF) and nonnegative canonical polyadic decomposition (NCPD) to model source parameters. While it effectively captures the low-rank structure of sources, the NMF model overlooks inter-channel dependencies. On the other hand, NCPD preserves intrinsic structure but lacks interpretable latent factors, making it challenging to incorporate prior information as constraints. To address these limitations, we introduce a clustered source model based on nonnegative block-term decomposition (NBTD). This model defines blocks as outer products of vectors (clusters) and matrices (for spectral structure modeling), offering interpretable latent vectors. Moreover, it enables straightforward integration of orthogonality constraints to ensure independence among source images. Experimental results demonstrate that our proposed method outperforms ILRMA and its extensions in anechoic conditions and surpasses the original ILRMA in simulated reverberant environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用聚类声源模型确定多通道盲声源分离技术
独立低阶矩阵分析(ILRMA)方法是多声道盲音频源分离的主要技术。它利用非负矩阵因式分解(NMF)和非负同义分解(NCPD)来建立音源参数模型。虽然它能有效捕捉声源的低秩结构,但 NMF 模型忽略了信道间的依赖性。另一方面,NCPD 保留了内在结构,但缺乏可解释的潜在因素,这使得将先验信息作为约束条件具有挑战性。为了解决这些局限性,我们引入了基于非负块项分解(NBTD)的聚类源模型。该模型将块定义为向量(聚类)和矩阵(用于频谱结构建模)的外积,提供了可解释的潜在向量。实验结果表明,我们提出的方法在消声条件下优于 ILRMA 及其扩展方法,在模拟混响环境下优于原始的 ILRMA 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1