{"title":"$$L^p$$ bounds for Stein’s spherical maximal operators","authors":"Naijia Liu, Minxing Shen, Liang Song, Lixin Yan","doi":"10.1007/s00208-024-02884-y","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathfrak {M}}^\\alpha \\)</span> be the spherical maximal operators of complex order <span>\\(\\alpha \\)</span> on <span>\\({{\\mathbb {R}}^n}\\)</span>. In this article we show that when <span>\\(n\\ge 2\\)</span>, suppose </p><span>$$\\begin{aligned} \\Vert {\\mathfrak {M}}^{\\alpha } f \\Vert _{L^p({{\\mathbb {R}}^n})} \\le C\\Vert f \\Vert _{L^p({{\\mathbb {R}}^n})} \\end{aligned}$$</span><p>holds for some <span>\\(\\alpha \\)</span> and <span>\\(p\\ge 2\\)</span>, then we must have that <span>\\(\\textrm{Re}\\,\\alpha \\ge \\max \\{1/p-(n-1)/2,\\ -(n-1)/p \\}.\\)</span> In particular, when <span>\\(n=2\\)</span>, we prove that <span>\\( \\Vert {\\mathfrak {M}}^{\\alpha } f \\Vert _{L^p({{\\mathbb {R}}^2})} \\le C\\Vert f \\Vert _{L^p({{\\mathbb {R}}^2})}\\)</span> if <span>\\(\\textrm{Re}\\ \\! \\alpha >\\max \\{1/p-1/2,\\ -1/p\\}\\)</span>, and consequently the range of <span>\\(\\alpha \\)</span> is sharp in the sense that the estimate fails for <span>\\(\\textrm{Re}\\ \\alpha <\\max \\{1/p-1/2, -1/ p\\}.\\)</span></p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"42 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02884-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let \({\mathfrak {M}}^\alpha \) be the spherical maximal operators of complex order \(\alpha \) on \({{\mathbb {R}}^n}\). In this article we show that when \(n\ge 2\), suppose
$$\begin{aligned} \Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({{\mathbb {R}}^n})} \le C\Vert f \Vert _{L^p({{\mathbb {R}}^n})} \end{aligned}$$
holds for some \(\alpha \) and \(p\ge 2\), then we must have that \(\textrm{Re}\,\alpha \ge \max \{1/p-(n-1)/2,\ -(n-1)/p \}.\) In particular, when \(n=2\), we prove that \( \Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({{\mathbb {R}}^2})} \le C\Vert f \Vert _{L^p({{\mathbb {R}}^2})}\) if \(\textrm{Re}\ \! \alpha >\max \{1/p-1/2,\ -1/p\}\), and consequently the range of \(\alpha \) is sharp in the sense that the estimate fails for \(\textrm{Re}\ \alpha <\max \{1/p-1/2, -1/ p\}.\)
让({\mathfrak {M}}^\alpha \)成为({\mathbb {R}}^n}\) 上复阶(\alpha \)的球面最大算子。在本文中,我们将证明当(n\ge 2\) 时,假设 $$\begin{aligned}{\Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({{\mathbb {R}}^n})}\le C\Vert f \Vert _{L^p({{\mathbb {R}}^n})}\end{aligned}$$holds for some \(α \) and \(p\ge 2\), then we must have that \(textrm{Re\},α \ge \max \{1/p-(n-1)/2,\ -(n-1)/p \}.\)特别地,当(n=2)时,我们证明( ( ( Vert {\mathfrak {M}}^{\alpha } f \Vert _{L^p({\{mathbb {R}}^2})}\le C\Vert f \Vert _{L^p({{\mathbb {R}}^2})}\) if (textrm{Re}\!\max (1/p-1/2,-1/p\}),因此 \(\alpha \)的范围是尖锐的,即 \(\textrm{Re}\alpha <\max (1/p-1/2,-1/p\}.\) 的估计失败。
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.