{"title":"Unleashing the Potential of Mixed Frequency Data: Measuring Risk with Dynamic Tail Index Regression Model","authors":"Hongyu An, Boping Tian","doi":"10.1007/s10614-024-10592-7","DOIUrl":null,"url":null,"abstract":"<p>Understanding why extreme events occur is crucial in many fields, particularly in managing financial market risk. In order to explain such occurrences, it is necessary to use explanatory variables. However, flexible models with explanatory variables are severely lacking in financial market risk management, particularly when the variables are sampled at different frequencies. To address this gap, this article proposes a novel dynamic tail index regression model based on mixed-frequency data, which enables the high-frequency variable of interest to depend on both high- and low-frequency variables within the framework of extreme value regression. Specifically, it concurrently leverages information from low-frequency macroeconomic variables and high-frequency market variables to model the tail distribution of high-frequency returns, consequently enabling the computation of high-frequency Value at Risk and Expected Shortfall. Monte Carlo simulations and empirical studies show that the proposed method effectively models stock market tail risk and produces satisfactory forecasts. Moreover, including macroeconomic variables in the model provides insights for macroprudential regulation.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"44 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10592-7","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding why extreme events occur is crucial in many fields, particularly in managing financial market risk. In order to explain such occurrences, it is necessary to use explanatory variables. However, flexible models with explanatory variables are severely lacking in financial market risk management, particularly when the variables are sampled at different frequencies. To address this gap, this article proposes a novel dynamic tail index regression model based on mixed-frequency data, which enables the high-frequency variable of interest to depend on both high- and low-frequency variables within the framework of extreme value regression. Specifically, it concurrently leverages information from low-frequency macroeconomic variables and high-frequency market variables to model the tail distribution of high-frequency returns, consequently enabling the computation of high-frequency Value at Risk and Expected Shortfall. Monte Carlo simulations and empirical studies show that the proposed method effectively models stock market tail risk and produces satisfactory forecasts. Moreover, including macroeconomic variables in the model provides insights for macroprudential regulation.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing