{"title":"Optimality and duality results for fractional programming problems under E-univexity","authors":"S. K. Mishra, D. Singh, Pankaj","doi":"10.1007/s11075-024-01840-w","DOIUrl":null,"url":null,"abstract":"<p>In this article, we deal with nonconvex fractional programming problems involving E-differentiable functions <span>\\((FP_E)\\)</span>. The so-called E-Karush-Kuhn-Tucker sufficient E-optimality conditions are established for nonsmooth optimization problems under E-univexity hypothesis. The established optimality conditions are explained with a numerical example. The so-called vector dual problem in the sense of Schaible <span>\\((SD_E)\\)</span> involves E-differentiable functions for <span>\\((FP_E)\\)</span> is defined under E-univexity hypothesis.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"2013 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01840-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we deal with nonconvex fractional programming problems involving E-differentiable functions \((FP_E)\). The so-called E-Karush-Kuhn-Tucker sufficient E-optimality conditions are established for nonsmooth optimization problems under E-univexity hypothesis. The established optimality conditions are explained with a numerical example. The so-called vector dual problem in the sense of Schaible \((SD_E)\) involves E-differentiable functions for \((FP_E)\) is defined under E-univexity hypothesis.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.