Personal assistant robot using reinforcement learning: DARWIN-OP2 as a case study

IF 2.3 4区 计算机科学 Q3 ROBOTICS Intelligent Service Robotics Pub Date : 2024-05-05 DOI:10.1007/s11370-024-00540-7
Khalil M. Ahmad Yousef, Bassam J. Mohd, Omar Barham, Ahmad Al-Najjar, Mohammad Abu-Diab, Anas AlMajali
{"title":"Personal assistant robot using reinforcement learning: DARWIN-OP2 as a case study","authors":"Khalil M. Ahmad Yousef, Bassam J. Mohd, Omar Barham, Ahmad Al-Najjar, Mohammad Abu-Diab, Anas AlMajali","doi":"10.1007/s11370-024-00540-7","DOIUrl":null,"url":null,"abstract":"<p>The use of robots as personal assistants has gained significant interest in recent years. In this research, our motivation is to employ a robot as a personal assistant to optimize the office ergonomics for students. Our personal assistant system consists of DARWIN-OP2 robot, reinforcement algorithm, ROS, communication with robot (using text to speech and speech to text capabilities), and bad posture detection. We conducted a case study on the personal assistant system. The robot receives feedback from student subjects through verbal chatting. Then, the robot executes some tasks such as performing actions or suggesting verbal advice’s to improve the student’s ergonomics. The study included a user evaluation of the robot’s performance, which involved a group of 31 student participants using the robot for a certain period of time. The results show that the DARWIN-OP2 robot is able to effectively and correctly provide valuable health exercises that relieved users’ pains. Additionally, student subjects reported high levels of satisfaction with the robot’s performance and perceived the robot as a helpful personal assistant as it helped in improving their ergonomics. In particular, evaluations of the system, using the group of 31 students, show the system scores 7.7 (out of 10) in speech recognition; 9.7 in health advice’s pain relief; and 9 in users’ opinion on using DARWIN-OP2 as a personal assistant.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00540-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of robots as personal assistants has gained significant interest in recent years. In this research, our motivation is to employ a robot as a personal assistant to optimize the office ergonomics for students. Our personal assistant system consists of DARWIN-OP2 robot, reinforcement algorithm, ROS, communication with robot (using text to speech and speech to text capabilities), and bad posture detection. We conducted a case study on the personal assistant system. The robot receives feedback from student subjects through verbal chatting. Then, the robot executes some tasks such as performing actions or suggesting verbal advice’s to improve the student’s ergonomics. The study included a user evaluation of the robot’s performance, which involved a group of 31 student participants using the robot for a certain period of time. The results show that the DARWIN-OP2 robot is able to effectively and correctly provide valuable health exercises that relieved users’ pains. Additionally, student subjects reported high levels of satisfaction with the robot’s performance and perceived the robot as a helpful personal assistant as it helped in improving their ergonomics. In particular, evaluations of the system, using the group of 31 students, show the system scores 7.7 (out of 10) in speech recognition; 9.7 in health advice’s pain relief; and 9 in users’ opinion on using DARWIN-OP2 as a personal assistant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强化学习的个人助理机器人:DARWIN-OP2 案例研究
近年来,使用机器人作为个人助理已引起人们的极大兴趣。在这项研究中,我们的动机是利用机器人作为个人助理,优化学生的办公工效。我们的个人助理系统由 DARWIN-OP2 机器人、强化算法、ROS、与机器人的通信(使用文本到语音和语音到文本功能)以及不良姿势检测组成。我们对个人助理系统进行了案例研究。机器人通过口头聊天接收学生的反馈。然后,机器人会执行一些任务,如执行动作或提出口头建议,以改善学生的人体工学状况。这项研究包括对机器人性能的用户评估,31 名学生参与了一段时间的机器人使用。结果表明,DARWIN-OP2 机器人能够有效、正确地提供有价值的健康锻炼,减轻用户的痛苦。此外,受试学生对机器人的性能表示高度满意,并认为机器人是一个有用的个人助手,因为它有助于改善他们的人体工学。特别是,31 名学生对该系统进行的评估显示,该系统在语音识别方面的得分为 7.7 分(满分 10 分);在健康咨询的疼痛缓解方面的得分为 9.7 分;在用户对使用 DARWIN-OP2 作为个人助理的看法方面的得分为 9 分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
期刊最新文献
Design, simulation, and experimental evaluation of a light weight, and wearable cable driven ForeWrist exoskeleton robot for assistance and rehabilitation Vision-based human–machine interface for a robotic exoskeleton glove designed for patients with brachial plexus injuries HAC-based adaptive combined pick-up path optimization strategy for intelligent warehouse A survey on integration of large language models with intelligent robots A “head-like” component of a terrestrial robot promotes anxiety-like and defensive behaviors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1