{"title":"Non-linear Time Series Prediction using Improved CEEMDAN, SVD and LSTM","authors":"Sameer Poongadan, M. C. Lineesh","doi":"10.1007/s11063-024-11622-z","DOIUrl":null,"url":null,"abstract":"<p>This study recommends a new time series forecasting model, namely ICEEMDAN - SVD - LSTM model, which coalesces Improved Complete Ensemble EMD with Adaptive Noise, Singular Value Decomposition and Long Short Term Memory network. It can be applied to analyse Non-linear and non-stationary data. The framework of this model is comprised of three levels, namely ICEEMDAN level, SVD level and LSTM level. The first level utilized ICEEMDAN to break up the series into some IMF components along with a residue. The SVD in the second level accounts for de-noising of every IMF component and residue. LSTM forecasts all the resultant IMF components and residue in third level. To obtain the forecasted values of the original data, the predictions of all IMF components and residue are added. The proposed model is contrasted with other extant ones, namely LSTM model, EMD - LSTM model, EEMD - LSTM model, CEEMDAN - LSTM model, EEMD - SVD - LSTM model, ICEEMDAN - LSTM model and CEEMDAN - SVD - LSTM model. The comparison bears witness to the potential of the recommended model over the traditional models.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11622-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study recommends a new time series forecasting model, namely ICEEMDAN - SVD - LSTM model, which coalesces Improved Complete Ensemble EMD with Adaptive Noise, Singular Value Decomposition and Long Short Term Memory network. It can be applied to analyse Non-linear and non-stationary data. The framework of this model is comprised of three levels, namely ICEEMDAN level, SVD level and LSTM level. The first level utilized ICEEMDAN to break up the series into some IMF components along with a residue. The SVD in the second level accounts for de-noising of every IMF component and residue. LSTM forecasts all the resultant IMF components and residue in third level. To obtain the forecasted values of the original data, the predictions of all IMF components and residue are added. The proposed model is contrasted with other extant ones, namely LSTM model, EMD - LSTM model, EEMD - LSTM model, CEEMDAN - LSTM model, EEMD - SVD - LSTM model, ICEEMDAN - LSTM model and CEEMDAN - SVD - LSTM model. The comparison bears witness to the potential of the recommended model over the traditional models.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters