Bcubed revisited: elements like me

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Retrieval Journal Pub Date : 2024-05-06 DOI:10.1007/s10791-024-09436-7
Ruben van Heusden, Jaap Kamps, Maarten Marx
{"title":"Bcubed revisited: elements like me","authors":"Ruben van Heusden, Jaap Kamps, Maarten Marx","doi":"10.1007/s10791-024-09436-7","DOIUrl":null,"url":null,"abstract":"<p>BCubed is a mathematically clean, elegant and intuitively well behaved external performance metric for clustering tasks. BCubed compares a predicted clustering to a known ground truth clustering through elementwise precision and recall scores. For each element, the predicted and ground truth clusters containing the element are compared, and the mean over all elements is taken. We argue that BCubed overestimates performance, for the intuitive reason that the clustering gets credit for putting an element into its own cluster. This is repaired, and we investigate the repaired version, called “Elements Like Me (ELM)”. We extensively evaluate ELM from both a theoretical and empirical perspective, and conclude that it retains all of its positive properties, and yields a minimum zero score when it should. Synthetic experiments show that ELM can produce different rankings of predicted clusterings when compared to BCubed, and that the ELM scores are distributed with lower mean and a larger variance than BCubed.\n</p>","PeriodicalId":54352,"journal":{"name":"Information Retrieval Journal","volume":"23 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Retrieval Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10791-024-09436-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

BCubed is a mathematically clean, elegant and intuitively well behaved external performance metric for clustering tasks. BCubed compares a predicted clustering to a known ground truth clustering through elementwise precision and recall scores. For each element, the predicted and ground truth clusters containing the element are compared, and the mean over all elements is taken. We argue that BCubed overestimates performance, for the intuitive reason that the clustering gets credit for putting an element into its own cluster. This is repaired, and we investigate the repaired version, called “Elements Like Me (ELM)”. We extensively evaluate ELM from both a theoretical and empirical perspective, and conclude that it retains all of its positive properties, and yields a minimum zero score when it should. Synthetic experiments show that ELM can produce different rankings of predicted clusterings when compared to BCubed, and that the ELM scores are distributed with lower mean and a larger variance than BCubed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bcubed 重访:像我这样的元素
BCubed 是一种用于聚类任务的外部性能指标,它在数学上简洁、优雅、直观。BCubed 通过元素精确度和召回分数将预测聚类与已知地面实况聚类进行比较。对于每个元素,都要对包含该元素的预测聚类和地面实况聚类进行比较,并取所有元素的平均值。我们认为 BCubed 高估了性能,其直观原因是聚类将元素归入了自己的聚类。我们研究了修复后的版本,称为 "Elements Like Me (ELM)"。我们从理论和实证的角度对 ELM 进行了广泛评估,得出的结论是,它保留了其所有积极的特性,并在适当的时候产生了最小零分。合成实验表明,与 BCubed 相比,ELM 可以产生不同的预测聚类排名,而且 ELM 分数的分布比 BCubed 平均值低、方差大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Retrieval Journal
Information Retrieval Journal 工程技术-计算机:信息系统
CiteScore
6.20
自引率
0.00%
发文量
17
审稿时长
13.5 months
期刊介绍: The journal provides an international forum for the publication of theory, algorithms, analysis and experiments across the broad area of information retrieval. Topics of interest include search, indexing, analysis, and evaluation for applications such as the web, social and streaming media, recommender systems, and text archives. This includes research on human factors in search, bridging artificial intelligence and information retrieval, and domain-specific search applications.
期刊最新文献
Searching rooms with top-k passenger flows using indoor trajectories An innovative approach for PCO morphology segmentation using a novel MOT-SF technique A graph residual generation network for node classification based on multi-information aggregation Similarity-based ranking of videos from fixed-size one-dimensional video signature The accessibility of digital technologies for people with visual impairment and blindness: a scoping review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1