Harsha Putla, Chanakya Patibandla, Krishna Pratap Singh, P Nagabhushan
{"title":"A Pilot Study of Observation Poisoning on Selective Reincarnation in Multi-Agent Reinforcement Learning","authors":"Harsha Putla, Chanakya Patibandla, Krishna Pratap Singh, P Nagabhushan","doi":"10.1007/s11063-024-11625-w","DOIUrl":null,"url":null,"abstract":"<p>This research explores the vulnerability of selective reincarnation, a concept in Multi-Agent Reinforcement Learning (MARL), in response to observation poisoning attacks. Observation poisoning is an adversarial strategy that subtly manipulates an agent’s observation space, potentially leading to a misdirection in its learning process. The primary aim of this paper is to systematically evaluate the robustness of selective reincarnation in MARL systems against the subtle yet potentially debilitating effects of observation poisoning attacks. Through assessing how manipulated observation data influences MARL agents, we seek to highlight potential vulnerabilities and inform the development of more resilient MARL systems. Our experimental testbed was the widely used HalfCheetah environment, utilizing the Independent Deep Deterministic Policy Gradient algorithm within a cooperative MARL setting. We introduced a series of triggers, namely Gaussian noise addition, observation reversal, random shuffling, and scaling, into the teacher dataset of the MARL system provided to the reincarnating agents of HalfCheetah. Here, the “teacher dataset” refers to the stored experiences from previous training sessions used to accelerate the learning of reincarnating agents in MARL. This approach enabled the observation of these triggers’ significant impact on reincarnation decisions. Specifically, the reversal technique showed the most pronounced negative effect for maximum returns, with an average decrease of 38.08% in Kendall’s tau values across all the agent combinations. With random shuffling, Kendall’s tau values decreased by 17.66%. On the other hand, noise addition and scaling aligned with the original ranking by only 21.42% and 32.66%, respectively. The results, quantified by Kendall’s tau metric, indicate the fragility of the selective reincarnation process under adversarial observation poisoning. Our findings also reveal that vulnerability to observation poisoning varies significantly among different agent combinations, with some exhibiting markedly higher susceptibility than others. This investigation elucidates our understanding of selective reincarnation’s robustness against observation poisoning attacks, which is crucial for developing more secure MARL systems and also for making informed decisions about agent reincarnation.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"308 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11625-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the vulnerability of selective reincarnation, a concept in Multi-Agent Reinforcement Learning (MARL), in response to observation poisoning attacks. Observation poisoning is an adversarial strategy that subtly manipulates an agent’s observation space, potentially leading to a misdirection in its learning process. The primary aim of this paper is to systematically evaluate the robustness of selective reincarnation in MARL systems against the subtle yet potentially debilitating effects of observation poisoning attacks. Through assessing how manipulated observation data influences MARL agents, we seek to highlight potential vulnerabilities and inform the development of more resilient MARL systems. Our experimental testbed was the widely used HalfCheetah environment, utilizing the Independent Deep Deterministic Policy Gradient algorithm within a cooperative MARL setting. We introduced a series of triggers, namely Gaussian noise addition, observation reversal, random shuffling, and scaling, into the teacher dataset of the MARL system provided to the reincarnating agents of HalfCheetah. Here, the “teacher dataset” refers to the stored experiences from previous training sessions used to accelerate the learning of reincarnating agents in MARL. This approach enabled the observation of these triggers’ significant impact on reincarnation decisions. Specifically, the reversal technique showed the most pronounced negative effect for maximum returns, with an average decrease of 38.08% in Kendall’s tau values across all the agent combinations. With random shuffling, Kendall’s tau values decreased by 17.66%. On the other hand, noise addition and scaling aligned with the original ranking by only 21.42% and 32.66%, respectively. The results, quantified by Kendall’s tau metric, indicate the fragility of the selective reincarnation process under adversarial observation poisoning. Our findings also reveal that vulnerability to observation poisoning varies significantly among different agent combinations, with some exhibiting markedly higher susceptibility than others. This investigation elucidates our understanding of selective reincarnation’s robustness against observation poisoning attacks, which is crucial for developing more secure MARL systems and also for making informed decisions about agent reincarnation.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters