Using Generative AI to Simulate Patient History-Taking in a Problem-Based Learning Tutorial: A Mixed-Methods Study

Allison Mool, Jacob Schmid, Thomas Johnston, William Thomas, Emma Fenner, Kevin Lu, Raya Gandhi, Adam Western, Brendan Seabold, Kodi Smith, Zachary Patterson, Hannah Feldt, Daniel Vollmer, Roshan Nallaveettil, Anthony Fanelli, Logan Schmillen, Shelley Tischkau, Anna T. Cianciolo, Pinckney Benedict, Richard Selinfreund
{"title":"Using Generative AI to Simulate Patient History-Taking in a Problem-Based Learning Tutorial: A Mixed-Methods Study","authors":"Allison Mool, Jacob Schmid, Thomas Johnston, William Thomas, Emma Fenner, Kevin Lu, Raya Gandhi, Adam Western, Brendan Seabold, Kodi Smith, Zachary Patterson, Hannah Feldt, Daniel Vollmer, Roshan Nallaveettil, Anthony Fanelli, Logan Schmillen, Shelley Tischkau, Anna T. Cianciolo, Pinckney Benedict, Richard Selinfreund","doi":"10.1101/2024.05.02.24306753","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Medical educators who implement problem-based learning (PBL) strive to balance realism and feasibility when simulating patient cases, aiming to stimulate collaborative group discussion, engage students’ clinical reasoning, motivate self-directed learning, and promote the development of actionable scientific understanding. Recent advances in generative artificial intelligence (AI) offer exciting new potential for patient simulation in PBL","PeriodicalId":501387,"journal":{"name":"medRxiv - Medical Education","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.02.24306753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Medical educators who implement problem-based learning (PBL) strive to balance realism and feasibility when simulating patient cases, aiming to stimulate collaborative group discussion, engage students’ clinical reasoning, motivate self-directed learning, and promote the development of actionable scientific understanding. Recent advances in generative artificial intelligence (AI) offer exciting new potential for patient simulation in PBL
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于问题的学习教程中使用生成式人工智能模拟患者病史采集:混合方法研究
背景实施基于问题的学习(PBL)的医学教育工作者在模拟病人病例时,努力在真实性和可行性之间取得平衡,旨在激发小组合作讨论,调动学生的临床推理能力,激励自主学习,并促进可操作的科学认识的发展。人工智能(AI)的最新进展为 PBL 中的病人模拟提供了令人兴奋的新潜力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barriers and facilitators for the implementation of wiki- and blog-based Virtual Learning Environments as tools for improving collaborative learning in the Bachelor of Nursing degree. Comparative Analysis of Stress Responses in Medical Students Using Virtual Reality Versus Traditional 3D-Printed Mannequins for Pericardiocentesis Training The Role of Artificial Intelligence in Modern Medical Education and Practice: A Systematic Literature Review Precision Education Tools for Pediatrics Trainees: A Mixed-Methods Multi-Site Usability Assessment Silence in physician clinical practice: a scoping review protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1