Device-independent quantum secure direct communication under non-Markovian quantum channels

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-05-06 DOI:10.1007/s11128-024-04397-8
Pritam Roy, Subhankar Bera, Shashank Gupta, A. S. Majumdar
{"title":"Device-independent quantum secure direct communication under non-Markovian quantum channels","authors":"Pritam Roy, Subhankar Bera, Shashank Gupta, A. S. Majumdar","doi":"10.1007/s11128-024-04397-8","DOIUrl":null,"url":null,"abstract":"<p>Device-independent quantum secure direct communication (DI-QSDC) is a promising primitive in quantum cryptography aimed towards addressing the problems of device imperfections and key management. However, significant effort is required to tackle practical challenges such as the distance limitation due to the decohering effects of quantum channels. Here, we explore the constructive effect of non-Markovian noise to improve the performance of DI-QSDC. Considering two different environmental dynamics modelled by the amplitude damping and the dephasing channels, we show that for both cases non-Markovianty leads to a considerable improvement over Markovian dynamics in terms of three benchmark performance criteria of the DI-QSDC task. Specifically, we find that non-Markovian noise (i) enhances the protocol security measured by Bell violation, (ii) leads to a lower quantum bit error rate, and (iii) enables larger communication distances by increasing the capacity of secret communication.\n</p>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11128-024-04397-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Device-independent quantum secure direct communication (DI-QSDC) is a promising primitive in quantum cryptography aimed towards addressing the problems of device imperfections and key management. However, significant effort is required to tackle practical challenges such as the distance limitation due to the decohering effects of quantum channels. Here, we explore the constructive effect of non-Markovian noise to improve the performance of DI-QSDC. Considering two different environmental dynamics modelled by the amplitude damping and the dephasing channels, we show that for both cases non-Markovianty leads to a considerable improvement over Markovian dynamics in terms of three benchmark performance criteria of the DI-QSDC task. Specifically, we find that non-Markovian noise (i) enhances the protocol security measured by Bell violation, (ii) leads to a lower quantum bit error rate, and (iii) enables larger communication distances by increasing the capacity of secret communication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非马尔可夫量子信道下与设备无关的量子安全直接通信
独立于设备的量子安全直接通信(DI-QSDC)是量子密码学中一种前景广阔的基本技术,旨在解决设备不完善和密钥管理等问题。然而,要解决量子信道的退相效应导致的距离限制等实际挑战,还需要付出巨大努力。在这里,我们探索了非马尔可夫噪声的建设性效应,以提高 DI-QSDC 的性能。考虑到以振幅阻尼和去相通道为模型的两种不同环境动态,我们表明,就 DI-QSDC 任务的三个基准性能标准而言,两种情况下的非马尔可夫动态都比马尔可夫动态有相当大的改进。具体地说,我们发现非马尔可夫噪声(i)增强了以贝尔违规衡量的协议安全性,(ii)导致了较低的量子比特错误率,(iii)通过增加秘密通信的容量实现了更大的通信距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
A quantum image encryption algorithm based on chaotic system and Rubik’s cube principle Blockchain data sharing scheme based on quantum re-encryption Exploring quantum coherence, spin squeezing and entanglement in an extended spin-1/2 XX chain A two-domain quantum color image watermarking scheme based on LSB algorithm Tighter parameterized monogamy relations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1