Review of experimental and analytical techniques to determine H, C, N, and S solubility and metal–silicate partitioning during planetary differentiation
Celia Dalou, Terry-Ann Suer, Laurent Tissandier, Weronika L. Ofierska, Alice Girani, Paolo A. Sossi
{"title":"Review of experimental and analytical techniques to determine H, C, N, and S solubility and metal–silicate partitioning during planetary differentiation","authors":"Celia Dalou, Terry-Ann Suer, Laurent Tissandier, Weronika L. Ofierska, Alice Girani, Paolo A. Sossi","doi":"10.1186/s40645-024-00629-8","DOIUrl":null,"url":null,"abstract":"<p>During their formation, terrestrial planets underwent a magma ocean phase during which their metallic cores segregated from their silicate mantles and their early atmospheres formed. These planetary formation processes resulted in a redistribution of the abundances of highly volatile elements (HVEs, such as H, C, N, and S) between the planets’ metallic cores, silicate mantles, and atmospheres. This review presents the numerous experimental techniques used to simulate the conditions and identify the parameters that influenced the behavior of HVEs during planetary formation. We also review the analytical techniques used to characterize the different types of experimental samples and quantify the distribution of HVEs between metallic and silicate phases, as well as their solubilities in silicate glasses. This exhaustive review targets students and young researchers beginning their work on the subject, or, more generally, scientists seeking a better understanding of this field of research.</p>\n","PeriodicalId":54272,"journal":{"name":"Progress in Earth and Planetary Science","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Earth and Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40645-024-00629-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
During their formation, terrestrial planets underwent a magma ocean phase during which their metallic cores segregated from their silicate mantles and their early atmospheres formed. These planetary formation processes resulted in a redistribution of the abundances of highly volatile elements (HVEs, such as H, C, N, and S) between the planets’ metallic cores, silicate mantles, and atmospheres. This review presents the numerous experimental techniques used to simulate the conditions and identify the parameters that influenced the behavior of HVEs during planetary formation. We also review the analytical techniques used to characterize the different types of experimental samples and quantify the distribution of HVEs between metallic and silicate phases, as well as their solubilities in silicate glasses. This exhaustive review targets students and young researchers beginning their work on the subject, or, more generally, scientists seeking a better understanding of this field of research.
期刊介绍:
Progress in Earth and Planetary Science (PEPS), a peer-reviewed open access e-journal, was launched by the Japan Geoscience Union (JpGU) in 2014. This international journal is devoted to high-quality original articles, reviews and papers with full data attached in the research fields of space and planetary sciences, atmospheric and hydrospheric sciences, human geosciences, solid earth sciences, and biogeosciences. PEPS promotes excellent review articles and welcomes articles with electronic attachments including videos, animations, and large original data files. PEPS also encourages papers with full data attached: papers with full data attached are scientific articles that preserve the full detailed raw research data and metadata which were gathered in their preparation and make these data freely available to the research community for further analysis.