Graph-Based Self-Regulation for Different Types of Networks with Adaptive Topology

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS AUTOMATIC CONTROL AND COMPUTER SCIENCES Pub Date : 2024-02-29 DOI:10.3103/S0146411623080217
E. Yu. Pavlenko, M. A. Pakhomov
{"title":"Graph-Based Self-Regulation for Different Types of Networks with Adaptive Topology","authors":"E. Yu. Pavlenko,&nbsp;M. A. Pakhomov","doi":"10.3103/S0146411623080217","DOIUrl":null,"url":null,"abstract":"<p>This article presents graph theory-based approaches to self-regulation of networks with adaptive network topology. These approaches are limited to networks with no node mobility—peer-to-peer and heterogeneous sensor networks, as well as industrial networks on the example of Smart Grid smart energy consumption networks. For each network type, a generalized target function is described, conditions for self-regulation are formulated, and a formal description of the process of self-regulation is provided.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"57 8","pages":"1055 - 1062"},"PeriodicalIF":0.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411623080217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents graph theory-based approaches to self-regulation of networks with adaptive network topology. These approaches are limited to networks with no node mobility—peer-to-peer and heterogeneous sensor networks, as well as industrial networks on the example of Smart Grid smart energy consumption networks. For each network type, a generalized target function is described, conditions for self-regulation are formulated, and a formal description of the process of self-regulation is provided.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有自适应拓扑的不同类型网络的基于图的自调节功能
摘要-本文介绍了基于图论的自适应网络拓扑网络自我调节方法。这些方法仅限于无节点移动性的网络--点对点网络和异构传感器网络,以及以智能电网智能能耗网络为例的工业网络。针对每种网络类型,都描述了广义的目标函数,提出了自我调节的条件,并对自我调节过程进行了正式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
期刊最新文献
Advancing Driver Behavior Recognition: An Intelligent Approach Utilizing ResNet Airborne Chemical Detection Using IoT and Machine Learning in the Agricultural Area Chinese License Plate Recognition Based on OpenCV and LPCR Net Research on Groundwater Level Prediction Method in Karst Areas Based on Improved Attention Mechanism Fusion Time Convolutional Network Road Traffic Classification from Nighttime Videos Using the Multihead Self-Attention Vision Transformer Model and the SVM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1