Transcriptomic responses to drought stress in the Patagonian southern beech Nothofagus alpina

IF 4.6 2区 环境科学与生态学 Q1 ECOLOGY Ecological Processes Pub Date : 2024-05-06 DOI:10.1186/s13717-024-00496-7
Rita Maria Lopez Laphitz, María Verónica Arana, Santiago Agustín Varela, Leandro Aníbal Becker, Carolina Soliani, María Marta Azpilicueta, Paula Marchelli, Nicolás Bellora
{"title":"Transcriptomic responses to drought stress in the Patagonian southern beech Nothofagus alpina","authors":"Rita Maria Lopez Laphitz, María Verónica Arana, Santiago Agustín Varela, Leandro Aníbal Becker, Carolina Soliani, María Marta Azpilicueta, Paula Marchelli, Nicolás Bellora","doi":"10.1186/s13717-024-00496-7","DOIUrl":null,"url":null,"abstract":"Deciphering the genetic architecture of drought tolerance could allow the candidate genes identification responding to water stress. In the Andean Patagonian forest, the genus Nothofagus represents an ecologically relevant species to be included in different genomic studies. These studies are scarce in South American ecosystems however represent an important source of genomic data in order to interpret future climate-change environment scenarios of these emblematic forests. Here, we achieved the assemblage of the transcriptome of N. alpina while searching for key genes of activated or suppressed metabolic pathways in response to drought stress. De novo transcriptome assembly resulted in 104,030 transcripts. Following confirmation of drought conditions, based on reduction of leaf water potential and stomatal conductance, a differential gene expression analysis resulted in 2720 significantly expressed genes (1601 up-regulated and 1119 down-regulated). Enrichment analysis (over-representation analysis and gene set enrichment analysis) resulted in more than one hundred stress-responsive term ontologies (i.e. biological processes) and pathways. Terms such as response to abscisic acid and pathways such as plant hormone signal transduction or starch and sucrose metabolism were over-represented. Protein–protein interaction assessment resulted in networks with significantly expressed top common hub gene clusters (e.g. plant-type cell wall biogenesis among down-regulated or ABA-signalling among up-regulated). These networks evidenced important regulators at gene expression such as transcriptional factors. Responses of N. alpina seedlings to drought stress were evidenced by the activation of several genes linked to GO biological processes and KEGG pathways, which were mainly based on over-expression of specific protein kinases, phosphatases, synthases and transcription factors. This suggests an up-regulation of signalling pathways, triggered through plant hormones such as abscisic acid or auxin, which could counteract the osmotic stress created as a probable immediate response to drought. On the other hand, groups of carbon fixation genes related to the galactose metabolism, photosynthesis, secondary wall biogenesis, and fatty acid biosynthesis degradation were down-regulated under drought. Overall, our results provide new genomic data for understanding how non-model long-lived trees of Patagonian forests would acclimate to environmental changes.","PeriodicalId":11419,"journal":{"name":"Ecological Processes","volume":"114 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Processes","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s13717-024-00496-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Deciphering the genetic architecture of drought tolerance could allow the candidate genes identification responding to water stress. In the Andean Patagonian forest, the genus Nothofagus represents an ecologically relevant species to be included in different genomic studies. These studies are scarce in South American ecosystems however represent an important source of genomic data in order to interpret future climate-change environment scenarios of these emblematic forests. Here, we achieved the assemblage of the transcriptome of N. alpina while searching for key genes of activated or suppressed metabolic pathways in response to drought stress. De novo transcriptome assembly resulted in 104,030 transcripts. Following confirmation of drought conditions, based on reduction of leaf water potential and stomatal conductance, a differential gene expression analysis resulted in 2720 significantly expressed genes (1601 up-regulated and 1119 down-regulated). Enrichment analysis (over-representation analysis and gene set enrichment analysis) resulted in more than one hundred stress-responsive term ontologies (i.e. biological processes) and pathways. Terms such as response to abscisic acid and pathways such as plant hormone signal transduction or starch and sucrose metabolism were over-represented. Protein–protein interaction assessment resulted in networks with significantly expressed top common hub gene clusters (e.g. plant-type cell wall biogenesis among down-regulated or ABA-signalling among up-regulated). These networks evidenced important regulators at gene expression such as transcriptional factors. Responses of N. alpina seedlings to drought stress were evidenced by the activation of several genes linked to GO biological processes and KEGG pathways, which were mainly based on over-expression of specific protein kinases, phosphatases, synthases and transcription factors. This suggests an up-regulation of signalling pathways, triggered through plant hormones such as abscisic acid or auxin, which could counteract the osmotic stress created as a probable immediate response to drought. On the other hand, groups of carbon fixation genes related to the galactose metabolism, photosynthesis, secondary wall biogenesis, and fatty acid biosynthesis degradation were down-regulated under drought. Overall, our results provide new genomic data for understanding how non-model long-lived trees of Patagonian forests would acclimate to environmental changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴塔哥尼亚南方山毛榉对干旱胁迫的转录组反应
破译耐旱性的基因结构可以识别响应水胁迫的候选基因。在安第斯巴塔哥尼亚森林中,Nothofagus 属是与生态相关的物种,应纳入不同的基因组研究。这些研究在南美生态系统中很少见,但却是解读这些标志性森林未来气候变化环境情景的重要基因组数据来源。在这里,我们完成了阿尔卑斯山红豆杉(N. alpina)转录组的组装,同时寻找干旱胁迫下激活或抑制代谢途径的关键基因。从头开始的转录本组组装产生了 104,030 个转录本。根据叶片水势和气孔导度的降低确认干旱条件后,差异基因表达分析得出了 2720 个显著表达的基因(1601 个上调,1119 个下调)。富集分析(过度呈现分析和基因组富集分析)得出了一百多个胁迫响应术语本体(即生物过程)和通路。对脱落酸的反应等术语和植物激素信号转导或淀粉和蔗糖代谢等途径的代表性过高。蛋白质-蛋白质相互作用评估产生了具有显著表达的顶级共同中心基因簇网络(例如,下调的植物类型细胞壁生物发生或上调的 ABA 信号转导)。这些网络证明了基因表达的重要调节因子,如转录因子。N. alpina幼苗对干旱胁迫的反应表现为与 GO 生物过程和 KEGG 通路相关的多个基因被激活,这些基因主要基于特定蛋白激酶、磷酸酶、合成酶和转录因子的过度表达。这表明,通过脱落酸或辅酶等植物激素触发的信号通路上调,可以抵消可能对干旱做出直接反应而产生的渗透胁迫。另一方面,与半乳糖代谢、光合作用、次生壁生物生成和脂肪酸生物合成降解有关的碳固定基因组在干旱条件下下调。总之,我们的研究结果为了解巴塔哥尼亚森林中的非模式长寿树如何适应环境变化提供了新的基因组数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Processes
Ecological Processes Environmental Science-Ecological Modeling
CiteScore
8.50
自引率
4.20%
发文量
64
审稿时长
13 weeks
期刊介绍: Ecological Processes is an international, peer-reviewed, open access journal devoted to quality publications in ecological studies with a focus on the underlying processes responsible for the dynamics and functions of ecological systems at multiple spatial and temporal scales. The journal welcomes manuscripts on techniques, approaches, concepts, models, reviews, syntheses, short communications and applied research for advancing our knowledge and capability toward sustainability of ecosystems and the environment. Integrations of ecological and socio-economic processes are strongly encouraged.
期刊最新文献
Effects of warming on soil fungal community and its function in a temperate steppe Non-linear response of plant caloric value to N addition and mowing treatments in a meadow steppe Spatial patterns of causality in temperate silvopastoral systems: a perspective on nitrification stability in response to flooding Functional and phylogenetic structure of mammals along elevational gradients in the Central and East Himalayas Fine spatial scale assessment of structure and configuration of vegetation cover for northern bobwhites in grazed pastures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1