V. Yu. Rezvov, M. A. Krinitskiy, V. A. Golikov, N. D. Tilinina
{"title":"Improvement of the AI-Based Estimation of Significant Wave Height Based on Preliminary Training on Synthetic X-Band Radar Sea Clutter Images","authors":"V. Yu. Rezvov, M. A. Krinitskiy, V. A. Golikov, N. D. Tilinina","doi":"10.3103/S0027134923070275","DOIUrl":null,"url":null,"abstract":"<p>Marine X-band radar is an important navigational tool that records signals reflected from the sea surface. Theoretical studies show that the initial unfiltered signal contains information about the sea surface state, including wind wave parameters. Physical laws describing the intensity of the signal reflected from the rough surface are the basis of the classical approaches for significant wave height (SWH) estimation. Nevertheless, the latest research claims the possibility of SWH approximation using machine learning models. Both classical and AI-based approaches require in situ data collected during expensive sea expeditions or with wave monitoring systems. An alternative to real data is generation of synthetic radar images with certain wind wave parameters. This Fourier-based approach is capable of modelling the sea clutter images for wind waves of any given height. Assuming a fully-developed sea, we generate synthetic images from the Pierson–Moskowitz wave spectrum. After that, we apply an unsupervised learning using synthetic radar images to train the convolutional part of the neural network as the encoding part of the autoencoder. In this study, we demonstrate how the accuracy of SWH estimation based on radar images changes when the neural network is pretrained on synthetic data.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"78 1 supplement","pages":"S188 - S201"},"PeriodicalIF":0.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0027134923070275","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine X-band radar is an important navigational tool that records signals reflected from the sea surface. Theoretical studies show that the initial unfiltered signal contains information about the sea surface state, including wind wave parameters. Physical laws describing the intensity of the signal reflected from the rough surface are the basis of the classical approaches for significant wave height (SWH) estimation. Nevertheless, the latest research claims the possibility of SWH approximation using machine learning models. Both classical and AI-based approaches require in situ data collected during expensive sea expeditions or with wave monitoring systems. An alternative to real data is generation of synthetic radar images with certain wind wave parameters. This Fourier-based approach is capable of modelling the sea clutter images for wind waves of any given height. Assuming a fully-developed sea, we generate synthetic images from the Pierson–Moskowitz wave spectrum. After that, we apply an unsupervised learning using synthetic radar images to train the convolutional part of the neural network as the encoding part of the autoencoder. In this study, we demonstrate how the accuracy of SWH estimation based on radar images changes when the neural network is pretrained on synthetic data.
期刊介绍:
Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.