R-estimation in linear models: algorithms, complexity, challenges

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-03 DOI:10.1007/s00180-024-01495-0
Jaromír Antoch, Michal Černý, Ryozo Miura
{"title":"R-estimation in linear models: algorithms, complexity, challenges","authors":"Jaromír Antoch, Michal Černý, Ryozo Miura","doi":"10.1007/s00180-024-01495-0","DOIUrl":null,"url":null,"abstract":"<p>The main objective of this paper is to discuss selected computational aspects of robust estimation in the linear model with the emphasis on <i>R</i>-estimators. We focus on numerical algorithms and computational efficiency rather than on statistical properties. In addition, we formulate some algorithmic properties that a “good” method for <i>R</i>-estimators is expected to satisfy and show how to satisfy them using the currently available algorithms. We illustrate both good and bad properties of the existing algorithms. We propose two-stage methods to minimize the effect of the bad properties. Finally we justify a challenge for new approaches based on interior-point methods in optimization.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01495-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this paper is to discuss selected computational aspects of robust estimation in the linear model with the emphasis on R-estimators. We focus on numerical algorithms and computational efficiency rather than on statistical properties. In addition, we formulate some algorithmic properties that a “good” method for R-estimators is expected to satisfy and show how to satisfy them using the currently available algorithms. We illustrate both good and bad properties of the existing algorithms. We propose two-stage methods to minimize the effect of the bad properties. Finally we justify a challenge for new approaches based on interior-point methods in optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性模型中的 R 估计:算法、复杂性和挑战
本文的主要目的是讨论线性模型中稳健估计的某些计算问题,重点是 R 估计器。我们的重点是数值算法和计算效率,而不是统计特性。此外,我们还提出了 R 估计器的 "好 "方法应满足的一些算法属性,并展示了如何利用现有算法满足这些属性。我们举例说明了现有算法的优点和缺点。我们提出了两阶段方法,以尽量减少不良属性的影响。最后,我们对基于优化中内点法的新方法提出了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1