{"title":"Suprathermal-ion-driven fusion chain reactions in the pure deuterium system","authors":"A P L Robinson","doi":"10.1088/1361-6587/ad441a","DOIUrl":null,"url":null,"abstract":"It is argued that fusion chain reactions in the D-D system is feasible with supra-thermal deuterons in the MeV regime, with new generations of deuterons being generated either via neutron–deuteron or proton–deuteron collisions. The propagation of supra-thermal deuterons in an infinite, hot, dense deuterium target was studied using a Monte Carlo method that includes multiple nuclear reactions, electron and ion stopping, along with neutron and proton knock-ons. Over a wide range of densities we observed significant, albeit sub-critical chain reactions in the multi-keV temperature regime. At very high densities (over 1000 gcm−3) and temperatures (over 40 keV) we observed chain reactions that reached criticality. These results suggest that there is a case to re-assess the potential of inertial confinement fusion based on deuterium-heavy targets.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"35 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad441a","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
It is argued that fusion chain reactions in the D-D system is feasible with supra-thermal deuterons in the MeV regime, with new generations of deuterons being generated either via neutron–deuteron or proton–deuteron collisions. The propagation of supra-thermal deuterons in an infinite, hot, dense deuterium target was studied using a Monte Carlo method that includes multiple nuclear reactions, electron and ion stopping, along with neutron and proton knock-ons. Over a wide range of densities we observed significant, albeit sub-critical chain reactions in the multi-keV temperature regime. At very high densities (over 1000 gcm−3) and temperatures (over 40 keV) we observed chain reactions that reached criticality. These results suggest that there is a case to re-assess the potential of inertial confinement fusion based on deuterium-heavy targets.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.