CYP116B5-SOX: An artificial peroxygenase for drug metabolites production and bioremediation

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-05-08 DOI:10.1002/biot.202300664
Daniele Giuriato, Gianluca Catucci, Danilo Correddu, Giovanna Di Nardo, Gianfranco Gilardi
{"title":"CYP116B5-SOX: An artificial peroxygenase for drug metabolites production and bioremediation","authors":"Daniele Giuriato,&nbsp;Gianluca Catucci,&nbsp;Danilo Correddu,&nbsp;Giovanna Di Nardo,&nbsp;Gianfranco Gilardi","doi":"10.1002/biot.202300664","DOIUrl":null,"url":null,"abstract":"<p>CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H<sub>2</sub>O<sub>2</sub>. Recently, the <i>Molecular Lego</i> approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H<sub>2</sub>O<sub>2</sub> in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a T<sub>M</sub> of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol<sup>−1</sup> for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H<sub>2</sub>O<sub>2</sub> (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H<sub>2</sub>O<sub>2</sub> generation, an improved <i>k<sub>cat</sub>/K<sub>M</sub></i> for the <i>p</i>-nitrophenol conversion was observed (<i>k<sub>cat</sub></i> of 20.1 ± 0.6 min<sup>−1</sup> and <i>K<sub>M</sub></i> of 0.23 ± 0.03 mM), corresponding to 4 times the <i>k<sub>cat</sub>/K<sub>M</sub></i> of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an <i>E. coli</i> strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen <i>N</i>-oxide production—herein detected for the first time as CYP116B5 metabolite—compared to the direct H<sub>2</sub>O<sub>2</sub> supply, equal to the 25% of the total drug conversion.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202300664","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol−1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min−1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production—herein detected for the first time as CYP116B5 metabolite—compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CYP116B5-SOX:一种用于生产药物代谢物和生物修复的人工过氧酶。
CYP116B5 是第七类 P450,其血红素结构域与 FMN 和 2Fe2S 结合还原酶相连。我们的实验室已经证明,CYP116B5 血红素结构域(CYP116B5-hd)能够利用 H2O2 催化底物氧化。最近,研究人员应用分子乐高(Molecular Lego)方法将 CYP116B5 的血红素结构域与肌氨酸氧化酶(SOX)连接起来,通过肌氨酸氧化作用在原位提供 H2O2。在这项工作中,异源表达、纯化了嵌合自足融合酶 CYP116B5-SOX,并通过吸光度和荧光光谱鉴定了其功能。差示扫描量热法(DSC)实验显示,CYP116B5 和 SOX 结构域的温度分别为 48.4 ± 0.04°C 和 58.3 ± 0.02°C,热焓值分别为 175,500 ± 1850 和 120,500 ± 1350 cal mol-1。融合酶在高达 200 mM 肌氨酸或 5 mM H2O2(血红素泄漏率分别为 4.4 ± 0.8% 和 11.0 ± 2.6%)的条件下表现出卓越的化学稳定性。由于原位生成了 H2O2,对硝基苯酚转化的 kcat/KM 得到了改善(kcat 为 20.1 ± 0.6 min-1 和 KM 为 0.23 ± 0.03 mM),相当于 CYP116B5-hd 的 kcat/KM 的 4 倍。这项工作的目的是开发一种可用于生物修复的工程生物催化剂。为了应对这一挑战,我们采用了表达 CYP116B5-SOX 的大肠杆菌菌株,利用这种生物催化剂氧化废水污染药物他莫昔芬。数据显示,与直接提供 H2O2 相比,他莫昔芬 N-氧化物的生成量增加了 12 倍,这也是首次检测到 CYP116B5 代谢产物,相当于药物总转化率的 25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi Efficient generation of recombinant anti-HER2 scFv with high yield and purity using a simple method Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30 Synthetic biology for Monascus: From strain breeding to industrial production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1