Jieun Oh, Boah Kim, Gyutaek Oh, Yul Hwangbo, Jong Chul Ye
{"title":"End-to-End Semi-Supervised Opportunistic Osteoporosis Screening Using Computed Tomography.","authors":"Jieun Oh, Boah Kim, Gyutaek Oh, Yul Hwangbo, Jong Chul Ye","doi":"10.3803/EnM.2023.1860","DOIUrl":null,"url":null,"abstract":"<p><strong>Backgruound: </strong>Osteoporosis is the most common metabolic bone disease and can cause fragility fractures. Despite this, screening utilization rates for osteoporosis remain low among populations at risk. Automated bone mineral density (BMD) estimation using computed tomography (CT) can help bridge this gap and serve as an alternative screening method to dual-energy X-ray absorptiometry (DXA).</p><p><strong>Methods: </strong>The feasibility of an opportunistic and population agnostic screening method for osteoporosis using abdominal CT scans without bone densitometry phantom-based calibration was investigated in this retrospective study. A total of 268 abdominal CT-DXA pairs and 99 abdominal CT studies without DXA scores were obtained from an oncology specialty clinic in the Republic of Korea. The center axial CT slices from the L1, L2, L3, and L4 lumbar vertebrae were annotated with the CT slice level and spine segmentation labels for each subject. Deep learning models were trained to localize the center axial slice from the CT scan of the torso, segment the vertebral bone, and estimate BMD for the top four lumbar vertebrae.</p><p><strong>Results: </strong>Automated vertebra-level DXA measurements showed a mean absolute error (MAE) of 0.079, Pearson's r of 0.852 (P<0.001), and R2 of 0.714. Subject-level predictions on the held-out test set had a MAE of 0.066, Pearson's r of 0.907 (P<0.001), and R2 of 0.781.</p><p><strong>Conclusion: </strong>CT scans collected during routine examinations without bone densitometry calibration can be used to generate DXA BMD predictions.</p>","PeriodicalId":11636,"journal":{"name":"Endocrinology and Metabolism","volume":" ","pages":"500-510"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220219/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3803/EnM.2023.1860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Backgruound: Osteoporosis is the most common metabolic bone disease and can cause fragility fractures. Despite this, screening utilization rates for osteoporosis remain low among populations at risk. Automated bone mineral density (BMD) estimation using computed tomography (CT) can help bridge this gap and serve as an alternative screening method to dual-energy X-ray absorptiometry (DXA).
Methods: The feasibility of an opportunistic and population agnostic screening method for osteoporosis using abdominal CT scans without bone densitometry phantom-based calibration was investigated in this retrospective study. A total of 268 abdominal CT-DXA pairs and 99 abdominal CT studies without DXA scores were obtained from an oncology specialty clinic in the Republic of Korea. The center axial CT slices from the L1, L2, L3, and L4 lumbar vertebrae were annotated with the CT slice level and spine segmentation labels for each subject. Deep learning models were trained to localize the center axial slice from the CT scan of the torso, segment the vertebral bone, and estimate BMD for the top four lumbar vertebrae.
Results: Automated vertebra-level DXA measurements showed a mean absolute error (MAE) of 0.079, Pearson's r of 0.852 (P<0.001), and R2 of 0.714. Subject-level predictions on the held-out test set had a MAE of 0.066, Pearson's r of 0.907 (P<0.001), and R2 of 0.781.
Conclusion: CT scans collected during routine examinations without bone densitometry calibration can be used to generate DXA BMD predictions.
期刊介绍:
The aim of this journal is to set high standards of medical care by providing a forum for discussion for basic, clinical, and translational researchers and clinicians on new findings in the fields of endocrinology and metabolism. Endocrinology and Metabolism reports new findings and developments in all aspects of endocrinology and metabolism. The topics covered by this journal include bone and mineral metabolism, cytokines, developmental endocrinology, diagnostic endocrinology, endocrine research, dyslipidemia, endocrine regulation, genetic endocrinology, growth factors, hormone receptors, hormone action and regulation, management of endocrine diseases, clinical trials, epidemiology, molecular endocrinology, neuroendocrinology, neuropeptides, neurotransmitters, obesity, pediatric endocrinology, reproductive endocrinology, signal transduction, the anatomy and physiology of endocrine organs (i.e., the pituitary, thyroid, parathyroid, and adrenal glands, and the gonads), and endocrine diseases (diabetes, nutrition, osteoporosis, etc.).