Protein loss during membrane processes in biopharmaceutical manufacturing

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-05-08 DOI:10.1002/biot.202400154
Jiwon Na, Ali Behboudi, Jiwon Mun, Hoeun Jin, Andrew L. Zydney, Youngbin Baek
{"title":"Protein loss during membrane processes in biopharmaceutical manufacturing","authors":"Jiwon Na,&nbsp;Ali Behboudi,&nbsp;Jiwon Mun,&nbsp;Hoeun Jin,&nbsp;Andrew L. Zydney,&nbsp;Youngbin Baek","doi":"10.1002/biot.202400154","DOIUrl":null,"url":null,"abstract":"<p>Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400154","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Maximizing product yield in biopharmaceutical manufacturing processes is a critical factor in determining the overall cost of goods, especially given the high value of these biological products. However, there has been relatively limited research on the quantitative analysis of protein losses due to adsorption and fouling during the different membrane filtration processes employed in typical downstream operations. This study aims to provide a comprehensive analysis of protein loss in the range of membrane systems used in downstream processing including clarification, virus removal filtration, ultrafiltration/diafiltration for formulation, and final sterile filtration, all using commercially available membranes with three model proteins (bovine serum albumin, human serum albumin, and immunoglobulin G). The correlation between protein loss and various parameters (i.e., protein type, protein concentration, throughput, membrane morphology, and protein removal mechanism) was also investigated. This study provides important insights into the nature of protein loss during membrane processes as well as a methodology for quantifying protein yield loss in bioprocesses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物制药生产过程中的膜过程蛋白质损失。
在生物制药生产过程中,最大限度地提高产品产量是决定总体商品成本的关键因素,特别是考虑到这些生物产品的高价值。然而,对典型下游操作中使用的不同膜过滤过程中由于吸附和结垢造成的蛋白质损失进行定量分析的研究相对有限。本研究旨在对下游处理过程中使用的一系列膜系统中的蛋白质损失进行全面分析,包括澄清、病毒去除过滤、用于配方的超滤/渗滤和最终无菌过滤,所有这些都使用市售膜和三种模型蛋白质(牛血清白蛋白、人血清白蛋白和免疫球蛋白 G)。此外,还研究了蛋白质损失与各种参数(即蛋白质类型、蛋白质浓度、产量、膜形态和蛋白质去除机制)之间的相关性。这项研究为了解膜处理过程中蛋白质损失的性质以及量化生物处理过程中蛋白质产量损失的方法提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi Efficient generation of recombinant anti-HER2 scFv with high yield and purity using a simple method Efficient production of 22(R)-hydroxycholesterol via combination optimization of Saccharomyces cerevisiae Exosomal lncRNA USP30-AS1 activates the Wnt/β-catenin signaling pathway to promote cervical cancer progression via stabilization of β-catenin by USP30 Synthetic biology for Monascus: From strain breeding to industrial production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1