Hub gene identification and immune infiltration analysis in hepatocellular carcinoma: Computational approach.

In silico pharmacology Pub Date : 2024-05-06 eCollection Date: 2024-01-01 DOI:10.1007/s40203-024-00215-2
Swetha Pulakuntla, Shri Abhiav Singh, Vaddi Damodara Reddy
{"title":"Hub gene identification and immune infiltration analysis in hepatocellular carcinoma: Computational approach.","authors":"Swetha Pulakuntla, Shri Abhiav Singh, Vaddi Damodara Reddy","doi":"10.1007/s40203-024-00215-2","DOIUrl":null,"url":null,"abstract":"<p><p>In the case of hepatocellular carcinoma, there is a need to find novel immune biomarkers to predict cancer prognosis, which will help prolong patient survival. On the basis of these findings, we explored the role of the hub genes in hepatocellular carcinoma via computational analysis for future immunotherapy. To study this phenomenon, we selected three datasets downloaded from the GEO database (GSE25097, GSE76427 and GSE84402). The gene expression analysis platform (GEAP) online tool was used for the data analysis to identify the DEGs. Functional enrichment analysis was performed by GO and KEGG enrichment analysis. The genes associated with these genes were identified via Cytoscape software. Immune cell infiltration and correlation analysis were used to screen the hub genes. The results revealed that the PTTG1, NCAPG, RACGAP1, PBK, ASPM, AURKA, CDCA5, KIF20A, MELK and PRC1 genes were correlated with immune targets, and these hub gene biomarkers will aid in future cancer prognosis and immunotherapy targeting in hepatocellular carcinoma patients.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00215-2.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 1","pages":"39"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00215-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the case of hepatocellular carcinoma, there is a need to find novel immune biomarkers to predict cancer prognosis, which will help prolong patient survival. On the basis of these findings, we explored the role of the hub genes in hepatocellular carcinoma via computational analysis for future immunotherapy. To study this phenomenon, we selected three datasets downloaded from the GEO database (GSE25097, GSE76427 and GSE84402). The gene expression analysis platform (GEAP) online tool was used for the data analysis to identify the DEGs. Functional enrichment analysis was performed by GO and KEGG enrichment analysis. The genes associated with these genes were identified via Cytoscape software. Immune cell infiltration and correlation analysis were used to screen the hub genes. The results revealed that the PTTG1, NCAPG, RACGAP1, PBK, ASPM, AURKA, CDCA5, KIF20A, MELK and PRC1 genes were correlated with immune targets, and these hub gene biomarkers will aid in future cancer prognosis and immunotherapy targeting in hepatocellular carcinoma patients.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00215-2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肝细胞癌中的枢纽基因鉴定和免疫浸润分析:计算方法。
就肝细胞癌而言,需要找到新的免疫生物标志物来预测癌症预后,这将有助于延长患者的生存期。在这些发现的基础上,我们通过计算分析探讨了枢纽基因在肝细胞癌中的作用,从而为未来的免疫疗法提供参考。为了研究这一现象,我们选择了从 GEO 数据库下载的三个数据集(GSE25097、GSE76427 和 GSE84402)。我们使用基因表达分析平台(GEAP)在线工具进行数据分析,以确定 DEGs。通过 GO 和 KEGG 富集分析进行了功能富集分析。通过 Cytoscape 软件确定了与这些基因相关的基因。免疫细胞浸润和相关性分析用于筛选枢纽基因。结果显示,PTTG1、NCAPG、RACGAP1、PBK、ASPM、AURKA、CDCA5、KIF20A、MELK和PRC1基因与免疫靶点相关,这些中枢基因生物标志物将有助于未来肝细胞癌患者的癌症预后和免疫治疗靶向:在线版本包含补充材料,可在10.1007/s40203-024-00215-2上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying potent ABCG2 inhibitors from the COCONUT database of natural compounds to overcome drug resistance in breast cancer: a comprehensive in silico study targeting ATP-binding cassette (ABC) transporter G2. Rational mRNA vaccine design against igbo-ora virus through immunoinformatic profiling of non-structural polyproteins. Targeting spermidine synthase in Leishmania donovani: molecular docking and molecular dynamics simulation-based evaluation of Indian medicinal plant phytochemicals. Unveiling isorhapontigenin's cardioprotective role via TGF-β1/smad pathway: insights from network pharmacology and molecular simulations. Convolutional neural network-assisted screening of natural product inhibitors against Naja naja venom: insights from molecular docking, molecular dynamics simulations and ADMET profiling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1