3D Echocardiogram Visualization: A New Method Based on "Focus + Context".

Samuelle St-Onge, Silvani Amin, Alana Cianciulli, Matthew A Jolley, Simon Drouin
{"title":"3D Echocardiogram Visualization: A New Method Based on \"Focus + Context\".","authors":"Samuelle St-Onge, Silvani Amin, Alana Cianciulli, Matthew A Jolley, Simon Drouin","doi":"10.1117/12.3006214","DOIUrl":null,"url":null,"abstract":"<p><p>3D echocardiography (3DE) is the standard modality for visualizing heart valves and their surrounding anatomical structures. Commercial cardiovascular ultrasound systems commonly offer a set of parameters that allow clinical users to modify, in real time, visual aspects of the information contained in the echocardiogram. To our knowledge, there is currently no work that demonstrates if the methods currently used by commercial platforms are optimal. In addition, current platforms have limitations in adjusting the visibility of anatomical structures, such as reducing information that obstructs anatomical structures without removing essential clinical information. To overcome this, the present work proposes a new method for 3DE visualization based on \"focus + context\" (F+C), a concept which aims to present a detailed region of interest while preserving a less detailed overview of the surrounding context. The new method is intended to allow clinical users to modify parameter values differently within a certain region of interest, independently from the adjustment of contextual information. To validate this new method, a user study was conducted amongst clinical experts. As part of the user study, clinical experts adjusted parameters for five echocardiograms of patients with complete atrioventricular canal defect (CAVC) using both the method conventionally used by commercial platforms and the proposed method based on F+C. The results showed relevance for the F+C-based method to visualize 3DE of CAVC patients, where users chose significantly different parameter values with the F+C-based method.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12929 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D echocardiography (3DE) is the standard modality for visualizing heart valves and their surrounding anatomical structures. Commercial cardiovascular ultrasound systems commonly offer a set of parameters that allow clinical users to modify, in real time, visual aspects of the information contained in the echocardiogram. To our knowledge, there is currently no work that demonstrates if the methods currently used by commercial platforms are optimal. In addition, current platforms have limitations in adjusting the visibility of anatomical structures, such as reducing information that obstructs anatomical structures without removing essential clinical information. To overcome this, the present work proposes a new method for 3DE visualization based on "focus + context" (F+C), a concept which aims to present a detailed region of interest while preserving a less detailed overview of the surrounding context. The new method is intended to allow clinical users to modify parameter values differently within a certain region of interest, independently from the adjustment of contextual information. To validate this new method, a user study was conducted amongst clinical experts. As part of the user study, clinical experts adjusted parameters for five echocardiograms of patients with complete atrioventricular canal defect (CAVC) using both the method conventionally used by commercial platforms and the proposed method based on F+C. The results showed relevance for the F+C-based method to visualize 3DE of CAVC patients, where users chose significantly different parameter values with the F+C-based method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维超声心动图可视化:基于 "焦点+语境 "的新方法
三维超声心动图(3DE)是观察心脏瓣膜及其周围解剖结构的标准模式。商用心血管超声系统通常提供一组参数,允许临床用户实时修改超声心动图所含信息的可视化方面。据我们所知,目前还没有研究表明商业平台目前使用的方法是否最佳。此外,目前的平台在调整解剖结构的可见度方面也有局限性,比如在不删除基本临床信息的情况下,减少了阻碍解剖结构的信息。为了克服这一问题,本研究提出了一种基于 "焦点+背景"(F+C)的 3DE 可视化新方法。新方法的目的是让临床用户在某个感兴趣区域内以不同方式修改参数值,而不受上下文信息调整的影响。为了验证这一新方法,在临床专家中开展了一项用户研究。作为用户研究的一部分,临床专家使用商业平台常规使用的方法和基于 F+C 的建议方法调整了五例完全性房室管缺损(CAVC)患者超声心动图的参数。结果表明,基于 F+C 的方法与 CAVC 患者的 3DE 可视化具有相关性,用户选择的参数值与基于 F+C 的方法有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Automated multi-lesion annotation in chest X-rays: annotating over 450,000 images from public datasets using the AI-based Smart Imagery Framing and Truthing (SIFT) system. High-Fidelity 3D Reconstruction for Accurate Anatomical Measurements in Endoscopic Sinus Surgery. Optimizing parylene and photoconductor thickness in indirect conversion amorphous selenium detectors. Intra- and inter-scanner CT variability and their impact on diagnostic tasks. Quantitative Accuracy of CT Protocols for Cross-sectional and Longitudinal Assessment of COPD: A Virtual Imaging Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1