{"title":"Sulfide and polysulfide as pronociceptive mediators: Focus on Cav3.2 function enhancement and TRPA1 activation","authors":"Fumiko Sekiguchi, Maho Tsubota, Atsufumi Kawabata","doi":"10.1016/j.jphs.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S–S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Ca<sub>v</sub>3.2 T-type Ca<sup>2+</sup> channels by eliminating Zn<sup>2+</sup> bound to the channels, thereby promoting somatic and visceral pain. Ca<sub>v</sub>3.2 is under inhibition by Zn<sup>2+</sup> in physiological conditions, so that sulfides function to reboot Ca<sub>v</sub>3.2 from Zn<sup>2+</sup> inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Ca<sub>v</sub>3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Ca<sub>v</sub>3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"155 3","pages":"Pages 113-120"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000379/pdfft?md5=1f97a5fce3fdafab5cd2ab4a64c8edd8&pid=1-s2.0-S1347861324000379-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000379","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive sulfur species including sulfides, polysulfides and cysteine hydropersulfide play extensive roles in health and disease, which involve modification of protein functions through the interaction with metals bound to the proteins, cleavage of cysteine disulfide (S–S) bonds and S-persulfidation of cysteine residues. Sulfides over a wide micromolar concentration range enhance the activity of Cav3.2 T-type Ca2+ channels by eliminating Zn2+ bound to the channels, thereby promoting somatic and visceral pain. Cav3.2 is under inhibition by Zn2+ in physiological conditions, so that sulfides function to reboot Cav3.2 from Zn2+ inhibition and increase the excitability of nociceptors. On the other hand, polysulfides generated from sulfides activate TRPA1 channels via cysteine S-persulfidation, thereby facilitating somatic, but not visceral, pain. Thus, Cav3.2 function enhancement by sulfides and TRPA1 activation by polysulfides, synergistically accelerate somatic pain signals. The increased activity of the sulfide/Cav3.2 system, in particular, appears to have a great impact on pathological pain, and may thus serve as a therapeutic target for treatment of neuropathic and inflammatory pain including visceral pain.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.