Manufacturing porous BaTaO2N nanosheet via nitridation of a novel oxyhalide precursor for boosted photocatalytic water oxidation reaction

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL Applied Catalysis A: General Pub Date : 2024-05-03 DOI:10.1016/j.apcata.2024.119779
Yixin Liu , Yanpei Luo , Beibei Dong
{"title":"Manufacturing porous BaTaO2N nanosheet via nitridation of a novel oxyhalide precursor for boosted photocatalytic water oxidation reaction","authors":"Yixin Liu ,&nbsp;Yanpei Luo ,&nbsp;Beibei Dong","doi":"10.1016/j.apcata.2024.119779","DOIUrl":null,"url":null,"abstract":"<div><p>BaTaO<sub>2</sub>N (BTON) with a generous adsorption edge of <em>ca.</em> 660 nm and high theoretical solar-to-hydrogen conversion efficiency of <em>ca.</em> 20.6% has been extensively investigated for photocatalytic water splitting. In this study, we have successfully prepared a porous BTON nanosheet via employing Ba<sub>2</sub>Bi<sub>3</sub>Ta<sub>2</sub>O<sub>11</sub>Cl (BBTOC) oxyhalide as a novel nitridation precursor. The oxygen evolution rate of the BTON nanosheet is 108 μmol·h<sup>−1</sup>, which is three times higher than that of BTON (25.9 μmol·h<sup>−1</sup>) prepared by conventional solid-state method. The successful construction of porous BTON nanosheet is due to the structural transformation of BBTOC nanosheet precursor and facile evaporation of Bi and Cl elements. The porous nanosheet morphology of BTON can not only promote the transfer of photogenerated charge carriers but also provide abundant reaction sites for the oxygen evolution reaction. This work demonstrates a novel and efficient strategy for preparing oxynitride for efficient solar energy conversion.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24002230","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BaTaO2N (BTON) with a generous adsorption edge of ca. 660 nm and high theoretical solar-to-hydrogen conversion efficiency of ca. 20.6% has been extensively investigated for photocatalytic water splitting. In this study, we have successfully prepared a porous BTON nanosheet via employing Ba2Bi3Ta2O11Cl (BBTOC) oxyhalide as a novel nitridation precursor. The oxygen evolution rate of the BTON nanosheet is 108 μmol·h−1, which is three times higher than that of BTON (25.9 μmol·h−1) prepared by conventional solid-state method. The successful construction of porous BTON nanosheet is due to the structural transformation of BBTOC nanosheet precursor and facile evaporation of Bi and Cl elements. The porous nanosheet morphology of BTON can not only promote the transfer of photogenerated charge carriers but also provide abundant reaction sites for the oxygen evolution reaction. This work demonstrates a novel and efficient strategy for preparing oxynitride for efficient solar energy conversion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氮化新型氧卤化物前驱体制造多孔 BaTaO2N 纳米片,促进光催化水氧化反应
BaTaO2N(BTON)具有约 660 纳米的宽吸附边缘,理论太阳能-氢气转换效率高达 20.6%,已被广泛研究用于光催化水分离。在本研究中,我们采用 Ba2Bi3Ta2O11Cl (BBTOC) 氧卤化物作为新型氮化前驱体,成功制备了多孔 BTON 纳米片。BTON 纳米片的氧进化速率为 108 μmol-h-1,是传统固态法制备的 BTON(25.9 μmol-h-1)的三倍。多孔 BTON 纳米片的成功制备得益于 BBTOC 纳米片前驱体的结构转变以及 Bi 和 Cl 元素的快速蒸发。BTON 的多孔纳米片形态不仅能促进光生电荷载流子的转移,还能为氧进化反应提供丰富的反应位点。这项工作展示了一种新颖高效的氮氧化物制备策略,可用于高效太阳能转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
期刊最新文献
Vapor-phase intramolecular aldol condensation of 2,5-hexanedione over yttrium zirconate catalyst Trace Pt-loading transition metal hydroxides as efficient catalyst for vaporized hydrogen peroxide decomposition Inhibiting effects during the co-conversion of lauric acid and anisole over Ni and NiMo catalysts Self-coupling of electron acceptor units in conjugated microporous polymers strengthening local donor-acceptor interaction for improving photocatalytic activity Ni0 dominated Ni/MgAl-LDO catalyst for highly efficient reductive amination of acetone to isopropylamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1