{"title":"Contrastive learning for deep tone mapping operator","authors":"Di Li , Mou Wang , Susanto Rahardja","doi":"10.1016/j.image.2024.117130","DOIUrl":null,"url":null,"abstract":"<div><p>Most existing tone mapping operators (TMOs) are developed based on prior assumptions of human visual system, and they are known to be sensitive to hyperparameters. In this paper, we proposed a straightforward yet efficient framework to automatically learn the priors and perform tone mapping in an end-to-end manner. The proposed algorithm utilizes a contrastive learning framework to enforce the content consistency between high dynamic range (HDR) inputs and low dynamic range (LDR) outputs. Since contrastive learning aims at maximizing the mutual information across different domains, no paired images or labels are required in our algorithm. Equipped with an attention-based U-Net to alleviate the aliasing and halo artifacts, our algorithm can produce sharp and visually appealing images over various complex real-world scenes, indicating that the proposed algorithm can be used as a strong baseline for future HDR image tone mapping task. Extensive experiments as well as subjective evaluations demonstrated that the proposed algorithm outperforms the existing state-of-the-art algorithms qualitatively and quantitatively. The code is available at <span>https://github.com/xslidi/CATMO</span><svg><path></path></svg>.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"126 ","pages":"Article 117130"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000316","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Most existing tone mapping operators (TMOs) are developed based on prior assumptions of human visual system, and they are known to be sensitive to hyperparameters. In this paper, we proposed a straightforward yet efficient framework to automatically learn the priors and perform tone mapping in an end-to-end manner. The proposed algorithm utilizes a contrastive learning framework to enforce the content consistency between high dynamic range (HDR) inputs and low dynamic range (LDR) outputs. Since contrastive learning aims at maximizing the mutual information across different domains, no paired images or labels are required in our algorithm. Equipped with an attention-based U-Net to alleviate the aliasing and halo artifacts, our algorithm can produce sharp and visually appealing images over various complex real-world scenes, indicating that the proposed algorithm can be used as a strong baseline for future HDR image tone mapping task. Extensive experiments as well as subjective evaluations demonstrated that the proposed algorithm outperforms the existing state-of-the-art algorithms qualitatively and quantitatively. The code is available at https://github.com/xslidi/CATMO.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.