A dynamic count process

Pub Date : 2024-04-26 DOI:10.1016/j.jspi.2024.106187
Namhyun Kim , Pipat Wongsa-art , Yingcun Xia
{"title":"A dynamic count process","authors":"Namhyun Kim ,&nbsp;Pipat Wongsa-art ,&nbsp;Yingcun Xia","doi":"10.1016/j.jspi.2024.106187","DOIUrl":null,"url":null,"abstract":"<div><p>The current paper aims to complement the recent development of the observation-driven models of dynamic counts with a parametric-driven one for a general case, particularly discrete two parameters exponential family distributions. The current paper proposes a finite semiparametric exponential mixture of SETAR processes of the conditional mean of counts to capture the nonlinearity and complexity. Because of the intrinsic latency of the conditional mean, the general additive state-space representation of dynamic counts is firstly proposed then stationarity and geometric ergodicity are established under a mild set of conditions. We also propose to estimate the unknown parameters by using quasi maximum likelihood estimation and establishes the asymptotic properties of the quasi maximum likelihood estimators (QMLEs), particularly <span><math><msqrt><mrow><mi>T</mi></mrow></msqrt></math></span>-consistency and normality under the relatively mild set of conditions. Furthermore, the finite sample properties of the QMLEs are investigated via simulation exercises and an illustration of the proposed process is presented by applying the proposed method to the intraday transaction counts per minute of AstraZeneca stock.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current paper aims to complement the recent development of the observation-driven models of dynamic counts with a parametric-driven one for a general case, particularly discrete two parameters exponential family distributions. The current paper proposes a finite semiparametric exponential mixture of SETAR processes of the conditional mean of counts to capture the nonlinearity and complexity. Because of the intrinsic latency of the conditional mean, the general additive state-space representation of dynamic counts is firstly proposed then stationarity and geometric ergodicity are established under a mild set of conditions. We also propose to estimate the unknown parameters by using quasi maximum likelihood estimation and establishes the asymptotic properties of the quasi maximum likelihood estimators (QMLEs), particularly T-consistency and normality under the relatively mild set of conditions. Furthermore, the finite sample properties of the QMLEs are investigated via simulation exercises and an illustration of the proposed process is presented by applying the proposed method to the intraday transaction counts per minute of AstraZeneca stock.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
动态计数过程
本文旨在用一般情况下的参数驱动动态计数模型,特别是离散双参数指数族分布模型,来补充观测驱动动态计数模型的最新发展。本文提出了一种计数条件均值 SETAR 过程的有限半参数指数混合物,以捕捉非线性和复杂性。由于条件均值的内在延迟性,本文首先提出了动态计数的一般加法状态空间表示法,然后在一组温和的条件下建立了静态性和几何遍历性。我们还提出用准极大似然估计法来估计未知参数,并建立了准极大似然估计器(QMLEs)的渐近特性,特别是在相对温和的条件下的 T 一致性和正态性。此外,还通过模拟练习研究了 QMLE 的有限样本特性,并通过将所提方法应用于阿斯利康股票每分钟的盘中交易计数,对所提过程进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1