{"title":"Towards a natural treatment for mania: red onion husk extract modulates neuronal resilience, redox signalling, and glial activation.","authors":"Chukwuma Raphael Ekeanyanwu, Chidinma Lynda Ekeanyanwu, Kingsley Nnaemeka Ugochukwu","doi":"10.1186/s40345-024-00338-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Red onion husk, a readily available agricultural waste material, contains diverse bioactive compounds with potential health benefits. This study aimed to assess the safety and therapeutic potential of red onion husk extract in managing manic-like symptoms and associated neurochemical dysfunctions.</p><p><strong>Methods: </strong>Acute and repeated oral dose studies were conducted in mice and rats to evaluate the safety profile of the extract. FT-IR analysis identified functional groups in the extract, while GC-MS analysis identified specific bioactive compounds in the flavonoid-rich fraction. A ketamine-induced manic behaviour model in Wistar rats was employed to assess the extract's efficacy in attenuating manic-like symptoms. Behavioural and neurochemical analyses were performed to further investigate the extract's effects.</p><p><strong>Results: </strong>The extract demonstrated a favourable safety profile in both acute and repeated dose studies. FT-IR analysis revealed a complex mixture of organic compounds, including hydroxyl groups, alkynes/nitriles, aromatic and non-aromatic C = C bonds, amines, and polysaccharides. GC-MS analysis identified 17 bioactive compounds, including five-methyl-2-phenylindolizine, methadone N-oxide, and 3-phenylthiane, S-oxide. Ketamine administration significantly increased oxidative stress markers, TBARS, and suppressed antioxidant enzyme activities (SOD, GPx, CAT) in both the cerebral cortex and hippocampus, alongside elevated acetylcholinesterase (AchE) activity, indicating enhanced neuronal excitability. Pre-treatment with FRF (25 mg/kg) effectively mitigated ketamine-induced oxidative stress, as evidenced by reduced TBARS levels and partially restored SOD and GPx activities. Interestingly, FRF significantly increased CAT activity (p < 0.001), potentially suggesting an additional compensatory mechanism. Notably, FRF pre-treatment also counteracted ketamine-upregulated AchE activity, offering neuroprotection against heightened neuronal excitability.</p><p><strong>Conclusion: </strong>Red onion husk extract exhibits a favourable safety profile and exerts potent antioxidant and neuroprotective effects, possibly through modulating Nrf2 signalling pathways. Its ability to counteract ketamine-induced oxidative stress and neuronal hyperactivity highlights its potential as a complementary therapeutic strategy for managing manic episodes in bipolar disorder. Further research is warranted to elucidate the precise molecular mechanisms underlying FRF's action and explore its clinical efficacy in human studies.</p>","PeriodicalId":13944,"journal":{"name":"International Journal of Bipolar Disorders","volume":"12 1","pages":"16"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bipolar Disorders","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40345-024-00338-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Red onion husk, a readily available agricultural waste material, contains diverse bioactive compounds with potential health benefits. This study aimed to assess the safety and therapeutic potential of red onion husk extract in managing manic-like symptoms and associated neurochemical dysfunctions.
Methods: Acute and repeated oral dose studies were conducted in mice and rats to evaluate the safety profile of the extract. FT-IR analysis identified functional groups in the extract, while GC-MS analysis identified specific bioactive compounds in the flavonoid-rich fraction. A ketamine-induced manic behaviour model in Wistar rats was employed to assess the extract's efficacy in attenuating manic-like symptoms. Behavioural and neurochemical analyses were performed to further investigate the extract's effects.
Results: The extract demonstrated a favourable safety profile in both acute and repeated dose studies. FT-IR analysis revealed a complex mixture of organic compounds, including hydroxyl groups, alkynes/nitriles, aromatic and non-aromatic C = C bonds, amines, and polysaccharides. GC-MS analysis identified 17 bioactive compounds, including five-methyl-2-phenylindolizine, methadone N-oxide, and 3-phenylthiane, S-oxide. Ketamine administration significantly increased oxidative stress markers, TBARS, and suppressed antioxidant enzyme activities (SOD, GPx, CAT) in both the cerebral cortex and hippocampus, alongside elevated acetylcholinesterase (AchE) activity, indicating enhanced neuronal excitability. Pre-treatment with FRF (25 mg/kg) effectively mitigated ketamine-induced oxidative stress, as evidenced by reduced TBARS levels and partially restored SOD and GPx activities. Interestingly, FRF significantly increased CAT activity (p < 0.001), potentially suggesting an additional compensatory mechanism. Notably, FRF pre-treatment also counteracted ketamine-upregulated AchE activity, offering neuroprotection against heightened neuronal excitability.
Conclusion: Red onion husk extract exhibits a favourable safety profile and exerts potent antioxidant and neuroprotective effects, possibly through modulating Nrf2 signalling pathways. Its ability to counteract ketamine-induced oxidative stress and neuronal hyperactivity highlights its potential as a complementary therapeutic strategy for managing manic episodes in bipolar disorder. Further research is warranted to elucidate the precise molecular mechanisms underlying FRF's action and explore its clinical efficacy in human studies.
期刊介绍:
The International Journal of Bipolar Disorders is a peer-reviewed, open access online journal published under the SpringerOpen brand. It publishes contributions from the broad range of clinical, psychological and biological research in bipolar disorders. It is the official journal of the ECNP-ENBREC (European Network of Bipolar Research Expert Centres ) Bipolar Disorders Network, the International Group for the study of Lithium Treated Patients (IGSLi) and the Deutsche Gesellschaft für Bipolare Störungen (DGBS) and invites clinicians and researchers from around the globe to submit original research papers, short research communications, reviews, guidelines, case reports and letters to the editor that help to enhance understanding of bipolar disorders.