Feeding strategy and feed protein level affect the gut microbiota of common carp (Cyprinus carpio)

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2024-05-09 DOI:10.1111/1758-2229.13262
Wouter Mes, Sebastian Lücker, Mike S. M. Jetten, Henk Siepel, Marnix Gorissen, Maartje A. H. J. van Kessel
{"title":"Feeding strategy and feed protein level affect the gut microbiota of common carp (Cyprinus carpio)","authors":"Wouter Mes,&nbsp;Sebastian Lücker,&nbsp;Mike S. M. Jetten,&nbsp;Henk Siepel,&nbsp;Marnix Gorissen,&nbsp;Maartje A. H. J. van Kessel","doi":"10.1111/1758-2229.13262","DOIUrl":null,"url":null,"abstract":"<p>Common carp (<i>Cyprinus carpio</i>) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of <i>Beijerinckiaceae</i> compared to other dietary groups. Network analysis identified this family and two <i>Rhizobiales</i> families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.13262","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.13262","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喂养策略和饲料蛋白质水平对鲤鱼肠道微生物群的影响
鲤鱼(Cyprinus carpio)在不同的喂养方式下摄入不同蛋白质浓度的食物,这些食物曾被证明会影响其生长、氮排泄和氨基酸分解。对这些鱼的肠道微生物群进行了 16S rRNA 基因扩增片段测序。较低的膳食蛋白质含量会增加微生物的丰富度,而按需投喂和膳食蛋白质含量的组合会影响肠道微生物群的组成。在所有日粮处理中,肝谷氨酸脱氢酶(GDH)活性都与肠道微生物群的组成相关。我们发现,与其他饲料组相比,饲喂蛋白质含量为 39% 的饲料的鲤鱼肠道微生物区系中的贝氏菌(Beijerinckiaceae)数量明显较多。网络分析发现,该科和两个根瘤菌科是微生物关联网络的枢纽。在按需投喂的鲤鱼中,微生物关联网络的连接数明显少于分批投喂的鲤鱼。与投喂方式和食物蛋白质含量对生长和氮代谢的巨大影响相反,投喂方式和食物蛋白质含量对肠道微生物群组成的影响有限。然而,肠道微生物群组成与肝脏 GDH 活性之间的相关性表明,宿主的生理机能与肠道微生物群之间存在联系,因此有必要对肠道微生物群在鱼类生理机能中的作用进行功能性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli. Metagenomic analysis reveals houseflies as indicators for monitoring environmental antibiotic resistance genes. Understanding the tolerance of halophilic archaea to stress landscapes. Increased antibiotic resistance gene abundance linked to intensive bacterial competition in the phyllosphere across an elevational gradient. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1