Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice.

IF 3.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular and Cellular Biology Pub Date : 2024-01-01 Epub Date: 2024-05-10 DOI:10.1080/10985549.2024.2345363
Hui Fu, Dengke Li, Wei Shuai, Bin Kong, Xi Wang, Yanhong Tang, He Huang, Congxin Huang
{"title":"Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice.","authors":"Hui Fu, Dengke Li, Wei Shuai, Bin Kong, Xi Wang, Yanhong Tang, He Huang, Congxin Huang","doi":"10.1080/10985549.2024.2345363","DOIUrl":null,"url":null,"abstract":"<p><p>Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"149-163"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2024.2345363","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苯乙酰谷氨酰胺对超压诱导高频小鼠心房颤动易感性的影响
苯乙酰谷氨酰胺(PAGln)是一种肠道代谢物,在心力衰竭(HF)患者中会大幅升高。血浆中 PAGln 的增加与心房颤动(AF)有关,是心房颤动的发病机制之一。然而,PAGln 在心房颤动合并高血压中的作用仍不确定。因此,本研究旨在确定 PAGln 对高频房颤后房颤的影响。胸主动脉缩窄术(TAC)造就了超压诱导高频小鼠,为期 4 周。在高频小鼠模型结束后,对其进行组织病理学、生物化学、超声心动图评估心脏功能,并对几项电生理指标(ERP、SNRT 和房颤发生率)进行电生理检查。我们发现,PAGln处理的高频小鼠血浆中PAGln水平显著升高,PAGln加重了高频小鼠适应性结构重塑和电重塑,从而加重了房颤的易感性,缩短了ERP持续时间,延长了SNRT,增加了房颤的发生率。从机制上看,PAGln加剧了ROS的积累,增加了磷酸化PLB和CAMK II的水平。总之,PAGln 通过激活 CAMK II 信号通路,在促进高频小鼠房颤发生中发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
期刊最新文献
Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. acp³U: A Conserved RNA Modification with Lessons Yet to Unfold. SIRT3 Deficiency Promotes Lung Endothelial Pyroptosis Through Impairing Mitophagy to Activate NLRP3 Inflammasome During Sepsis-Induced Acute Lung Injury. Mitogen-Activated Protein Kinase Phosphatase-5 is Required for TGF-β Signaling Through a JNK-Dependent Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1