Overexpression of PDR16 Confers Amphotericin B Resistance in a PMP3-Dependent Manner in Yeast Saccharomyces cerevisiae.

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES Microbial drug resistance Pub Date : 2024-07-01 Epub Date: 2024-05-10 DOI:10.1089/mdr.2024.0008
Sapna Kalra, Sunita Tanwar, Vinay Kumar Bari
{"title":"Overexpression of <i>PDR16</i> Confers Amphotericin B Resistance in a <i>PMP3-</i>Dependent Manner in Yeast <i>Saccharomyces cerevisiae</i>.","authors":"Sapna Kalra, Sunita Tanwar, Vinay Kumar Bari","doi":"10.1089/mdr.2024.0008","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive fungal infections in humans with compromised immune systems are the primary cause of morbidity and mortality, which is becoming more widely acknowledged. Amphotericin B (AmB) is one of the antifungal drugs used to treat such infections. AmB binds with plasma membrane ergosterol, inducing cellular ions to leak and causing cell death. Reduction in ergosterol content and modification of cell walls have been described as AmB resistance mechanisms. In addition, when the sphingolipid level is decreased, the cell becomes more susceptible to AmB. Previously, <i>PDR16</i>, a gene that encodes phosphatidylinositol transfer protein in <i>Saccharomyces cerevisiae</i>, was shown to enhance AmB resistance upon overexpression. However, the mechanism of <i>PDR16</i>-mediated AmB resistance is not clear. Here, in this study, it was discovered that a plasma membrane proteolipid 3 protein encoded by <i>PMP3</i> is essential for <i>PDR16</i>-mediated AmB resistance. <i>PDR16</i>-mediated AmB resistance does not depend on ergosterol, but a functional sphingolipid biosynthetic pathway is required. Additionally, <i>PMP3-</i>mediated alteration in membrane integrity abolishes <i>PDR16</i> mediated AmB resistance, confirming the importance of <i>PMP3</i> in the <i>PDR16</i> mediated AmB resistance.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"279-287"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Invasive fungal infections in humans with compromised immune systems are the primary cause of morbidity and mortality, which is becoming more widely acknowledged. Amphotericin B (AmB) is one of the antifungal drugs used to treat such infections. AmB binds with plasma membrane ergosterol, inducing cellular ions to leak and causing cell death. Reduction in ergosterol content and modification of cell walls have been described as AmB resistance mechanisms. In addition, when the sphingolipid level is decreased, the cell becomes more susceptible to AmB. Previously, PDR16, a gene that encodes phosphatidylinositol transfer protein in Saccharomyces cerevisiae, was shown to enhance AmB resistance upon overexpression. However, the mechanism of PDR16-mediated AmB resistance is not clear. Here, in this study, it was discovered that a plasma membrane proteolipid 3 protein encoded by PMP3 is essential for PDR16-mediated AmB resistance. PDR16-mediated AmB resistance does not depend on ergosterol, but a functional sphingolipid biosynthetic pathway is required. Additionally, PMP3-mediated alteration in membrane integrity abolishes PDR16 mediated AmB resistance, confirming the importance of PMP3 in the PDR16 mediated AmB resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDR16 在酵母中的过表达以 PMP3 依赖性方式产生两性霉素 B 抗性
在免疫系统受损的人群中,侵袭性真菌感染是发病和死亡的主要原因,这一点已得到越来越广泛的认可。两性霉素 B(AmB)是用于治疗此类感染的抗真菌药物之一。AmB 与质膜麦角固醇结合,诱导细胞离子泄漏,导致细胞死亡。麦角固醇含量的减少和细胞壁的改变被描述为 AmB 的抗药性机制。此外,当鞘磷脂水平降低时,细胞更容易受到 AmB 的影响。此前,在酿酒酵母(Saccharomyces cerevisiae)中编码磷脂酰肌醇转移蛋白的基因 PDR16 被证明在过表达后能增强对 AmB 的抗性。然而,PDR16 介导 AmB 抗性的机制尚不清楚。本研究发现,由 PMP3 编码的质膜蛋白脂 3 蛋白对 PDR16 介导的 AmB 抗性至关重要。PDR16 介导的 AmB 抗性并不依赖麦角甾醇,但需要功能性鞘脂生物合成途径。此外,PMP3 介导的膜完整性改变可消除 PDR16 介导的 AmB 抗性,这证实了 PMP3 在 PDR16 介导的 AmB 抗性中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
期刊最新文献
In-Vitro Activity of Dimercaptosuccinic Acid in Combination with Carbapenems Against Carbapenem-Resistant Pseudomonas aeruginosa. A Selective Culture Medium for Screening Aztreonam-Avibactam Resistance in Enterobacterales and Pseudomonas aeruginosa. Deciphering the Resistome and Mobiolme of an Avian-Associated Enterococus faecalis ST249 Clone that Acquired Vancomycin Resistance Isolated from Neutropenic Patient in Tunisia. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Emergence of Salmonella enterica Serovar Heidelberg Producing OXA 48 Carbapenemase in Eastern Algeria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1