{"title":"Application of Deep Learning for Studying NMDA Receptors.","authors":"Zhenfeng Deng, Ruichu Gu, Han Wen","doi":"10.1007/978-1-0716-3830-9_16","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood-brain barrier (BBB) permeability prediction, the quantitative structure-activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3830-9_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood-brain barrier (BBB) permeability prediction, the quantitative structure-activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.