An effective and comprehensive optimization strategy for preparing Ginkgo biloba leaf extract enriched in shikimic acid by macroporous resin column chromatography.
{"title":"An effective and comprehensive optimization strategy for preparing Ginkgo biloba leaf extract enriched in shikimic acid by macroporous resin column chromatography.","authors":"Sijie Zhang, Xingchu Gong, Haibin Qu","doi":"10.1002/pca.3375","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Previously reported preparation methods of Ginkgo biloba leaf extract (EGBL) have mainly focused on the enrichment of flavonoid glycosides (FG) and terpene trilactones (TT), which led to the underutilization of G. biloba leaves (GBL).</p><p><strong>Objectives: </strong>To make full use of GBL, in this study, a comprehensive optimization strategy for preparing EGBL by macroporous resin column chromatography was proposed and applied to enrich FG, TT, and shikimic acid (SA) from GBL.</p><p><strong>Methodology: </strong>Initially, the static adsorption and desorption were executed to select suitable resin. Then, the influences of solution pH were investigated by the static and dynamic adsorption. Subsequently, eight process parameters were systematically investigated via a definitive screening design (DSD). After verification experiments, scale-up enrichment was carried out, investigating the feasibility of the developed strategy for application on an industrial scale.</p><p><strong>Results: </strong>It was found that XDA1 was the most appropriate adsorbent for the preparation of EGBL at solution pH 2.0. Furthermore, based on the constraints of the desired quality attributes, the optimized ranges of operating parameters were successfully acquired, and the verification experiments demonstrated the accuracy and reliability of using DSD to investigate the chromatography process for the preparation of EGBL. Finally, magnified experiments were successfully performed, obtaining the EGBL containing 26.54% FG, 8.96% TT, and 10.70% SA, which reached the SA level of EGB761, an international standard EGBL.</p><p><strong>Conclusion: </strong>The present study not only provided an efficient and convenient approach for the preparation of EGBL enriched in SA but also accelerated efforts to high-value utilization of GBL.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"1428-1442"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3375","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Previously reported preparation methods of Ginkgo biloba leaf extract (EGBL) have mainly focused on the enrichment of flavonoid glycosides (FG) and terpene trilactones (TT), which led to the underutilization of G. biloba leaves (GBL).
Objectives: To make full use of GBL, in this study, a comprehensive optimization strategy for preparing EGBL by macroporous resin column chromatography was proposed and applied to enrich FG, TT, and shikimic acid (SA) from GBL.
Methodology: Initially, the static adsorption and desorption were executed to select suitable resin. Then, the influences of solution pH were investigated by the static and dynamic adsorption. Subsequently, eight process parameters were systematically investigated via a definitive screening design (DSD). After verification experiments, scale-up enrichment was carried out, investigating the feasibility of the developed strategy for application on an industrial scale.
Results: It was found that XDA1 was the most appropriate adsorbent for the preparation of EGBL at solution pH 2.0. Furthermore, based on the constraints of the desired quality attributes, the optimized ranges of operating parameters were successfully acquired, and the verification experiments demonstrated the accuracy and reliability of using DSD to investigate the chromatography process for the preparation of EGBL. Finally, magnified experiments were successfully performed, obtaining the EGBL containing 26.54% FG, 8.96% TT, and 10.70% SA, which reached the SA level of EGB761, an international standard EGBL.
Conclusion: The present study not only provided an efficient and convenient approach for the preparation of EGBL enriched in SA but also accelerated efforts to high-value utilization of GBL.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.