{"title":"Analysis of the homodimeric structure of a D-Ala-D-Ala metallopeptidase, VanX, from vancomycin-resistant bacteria.","authors":"Tsuyoshi Konuma, Tomoyo Takai, Chieko Tsuchiya, Masayuki Nishida, Miyu Hashiba, Yudai Yamada, Haruka Shirai, Yoko Motoda, Aritaka Nagadoi, Eriko Chikaishi, Ken-Ichi Akagi, Satoko Akashi, Toshio Yamazaki, Hideo Akutsu, Takahisa Ikegami","doi":"10.1002/pro.5002","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 6","pages":"e5002"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081423/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria that have acquired resistance to most antibiotics, particularly those causing nosocomial infections, create serious problems. Among these, the emergence of vancomycin-resistant enterococci was a tremendous shock, considering that vancomycin is the last resort for controlling methicillin-resistant Staphylococcus aureus. Therefore, there is an urgent need to develop an inhibitor of VanX, a protein involved in vancomycin resistance. Although the crystal structure of VanX has been resolved, its asymmetric unit contains six molecules aligned in a row. We have developed a structural model of VanX as a stable dimer in solution, primarily utilizing nuclear magnetic resonance (NMR) residual dipolar coupling. Despite the 46 kDa molecular mass of the dimer, the analyses, which are typically not as straightforward as those of small proteins around 10 kDa, were successfully conducted. We assigned the main chain using an amino acid-selective unlabeling method. Because we found that the zinc ion-coordinating active sites in the dimer structure were situated in the opposite direction to the dimer interface, we generated an active monomer by replacing an amino acid at the dimer interface. The monomer consists of only 202 amino acids and is expected to be used in future studies to screen and improve inhibitors using NMR.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).