Renato Hermoza , Jacinto C. Nascimento , Gustavo Carneiro
{"title":"Weakly-supervised preclinical tumor localization associated with survival prediction from lung cancer screening Chest X-ray images","authors":"Renato Hermoza , Jacinto C. Nascimento , Gustavo Carneiro","doi":"10.1016/j.compmedimag.2024.102395","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we hypothesize that it is possible to localize image regions of preclinical tumors in a Chest X-ray (CXR) image by a weakly-supervised training of a survival prediction model using a dataset containing CXR images of healthy patients and their time-to-death label. These visual explanations can empower clinicians in early lung cancer detection and increase patient awareness of their susceptibility to the disease. To test this hypothesis, we train a censor-aware multi-class survival prediction deep learning classifier that is robust to imbalanced training, where classes represent quantized number of days for time-to-death prediction. Such multi-class model allows us to use post-hoc interpretability methods, such as Grad-CAM, to localize image regions of preclinical tumors. For the experiments, we propose a new benchmark based on the National Lung Cancer Screening Trial (NLST) dataset to test weakly-supervised preclinical tumor localization and survival prediction models, and results suggest that our proposed method shows state-of-the-art C-index survival prediction and weakly-supervised preclinical tumor localization results. To our knowledge, this constitutes a pioneer approach in the field that is able to produce visual explanations of preclinical events associated with survival prediction results.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102395"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0895611124000727/pdfft?md5=13bd653784bd57b091f5c80e427ca52e&pid=1-s2.0-S0895611124000727-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000727","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we hypothesize that it is possible to localize image regions of preclinical tumors in a Chest X-ray (CXR) image by a weakly-supervised training of a survival prediction model using a dataset containing CXR images of healthy patients and their time-to-death label. These visual explanations can empower clinicians in early lung cancer detection and increase patient awareness of their susceptibility to the disease. To test this hypothesis, we train a censor-aware multi-class survival prediction deep learning classifier that is robust to imbalanced training, where classes represent quantized number of days for time-to-death prediction. Such multi-class model allows us to use post-hoc interpretability methods, such as Grad-CAM, to localize image regions of preclinical tumors. For the experiments, we propose a new benchmark based on the National Lung Cancer Screening Trial (NLST) dataset to test weakly-supervised preclinical tumor localization and survival prediction models, and results suggest that our proposed method shows state-of-the-art C-index survival prediction and weakly-supervised preclinical tumor localization results. To our knowledge, this constitutes a pioneer approach in the field that is able to produce visual explanations of preclinical events associated with survival prediction results.
在本文中,我们假设通过使用包含健康患者 CXR 图像及其死亡时间标签的数据集对生存预测模型进行弱监督训练,有可能在胸部 X 光(CXR)图像中定位临床前肿瘤的图像区域。这些可视化解释可以增强临床医生早期检测肺癌的能力,并提高患者对自身易感性的认识。为了验证这一假设,我们训练了一种对不平衡训练具有鲁棒性的审查器感知多类生存预测深度学习分类器,其中类代表了量化的死亡时间预测天数。这种多类模型允许我们使用事后可解释性方法(如 Grad-CAM)来定位临床前肿瘤的图像区域。在实验中,我们提出了一个基于国家肺癌筛查试验(NLST)数据集的新基准,以测试弱监督临床前肿瘤定位和生存预测模型,结果表明我们提出的方法显示了最先进的 C 指数生存预测和弱监督临床前肿瘤定位结果。据我们所知,这是该领域中能够对与生存预测结果相关的临床前事件进行可视化解释的开创性方法。
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.