{"title":"Cyanobacterial Biocrust on Biomineralized Soil Mitigates Freeze-Thaw Effects and Preserves Structure and Ecological Functions.","authors":"Keiichi Kimura, Toshiya Okuro","doi":"10.1007/s00248-024-02389-w","DOIUrl":null,"url":null,"abstract":"<p><p>Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"69"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087357/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02389-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biocrust inoculation and microbially induced carbonate precipitation (MICP) are tools used in restoring degraded arid lands. It remains unclear whether the ecological functions of the two tools persist when these methods are combined and subjected to freeze-thaw (FT) cycles. We hypothesized a synergetic interaction between MICP treatment and biocrust under FT cycles, which would allow both components to retain their ecological functions. We grew cyanobacterial (Nostoc commune) biocrusts on bare soil and on MICP (Sporosarcina pasteurii)-treated soil, subjecting them to repeated FT cycles simulating the Mongolian climate. Generalized linear modeling revealed that FT cycling did not affect physical structure or related functions but could increase the productivity and reduce the nutrient condition of the crust. The results confirm the high tolerance of MICP-treated soil and biocrust to FT cycling. MICP treatment + biocrust maintained higher total carbohydrate content under FT stress. Our study indicates that biocrust on biomineralized soil has a robust enough structure to endure FT cycling during spring and autumn and to promote restoration of degraded lands.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.