{"title":"A Literature Review of the Effect of Heat on the Physical-Chemical Properties of Calcium Silicate–Based Sealers","authors":"","doi":"10.1016/j.joen.2024.04.017","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Recently, calcium silicate–based sealers (CSSs) have gained popularity in endodontic practice due to their biocompatibility and antimicrobial properties. They are considered viable alternatives to epoxy resin-based sealers. With the increased use of CSSs and warm vertical compaction techniques in root canal treatment, evaluating the impact of heat on CSSs properties is essential, therefore this review aimed to present a qualitative synthesis of available <em>in vitro</em> studies assessing the impact of heat on the physical-chemical properties of CSSs.</p></div><div><h3>Methods</h3><p>Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 2020 guidelines, a systematic advanced electronic search was performed in Scopus, Embase, Medline (via PubMed), Web of Science, and Cochrane databases in November 2023 and updated in April 2024. <em>In vitro</em> studies that evaluated the physical-chemical properties of CSSs were eligible. PRILE 2021 guidelines were used for the assessment of the risk of bias–included studies.</p></div><div><h3>Results</h3><p>The search identified a total of 6421 preliminary results and 10 studies were included for qualitative assessment. Eleven different physiochemical properties were assessed by the included studies. Setting time and flow were the most evaluated property among the studies. A qualitative synthesis of the evidence on each property is presented.</p></div><div><h3>Conclusions</h3><p>Based on the <em>in vitro</em> studies assessed in the present systematic review, results reveal that exposing CSSs to heat can accelerate their setting time, reduce their flow, and increase their film thickness. Concerns persist regarding solubility, viscosity, radiopacity, dimensional change, microhardness, porosity, and compressive strength, requiring further research. Certain CSSs, such as MTA Fillapex and Endosequence BC sealer HiFlow, show minimal changes under heat, making them potential candidates for warm filling techniques.</p></div>","PeriodicalId":15703,"journal":{"name":"Journal of endodontics","volume":"50 8","pages":"Pages 1044-1058.e5"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0099239924002814/pdfft?md5=dd045142c50c7c8b3f7bb7b142b4e345&pid=1-s2.0-S0099239924002814-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of endodontics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0099239924002814","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Recently, calcium silicate–based sealers (CSSs) have gained popularity in endodontic practice due to their biocompatibility and antimicrobial properties. They are considered viable alternatives to epoxy resin-based sealers. With the increased use of CSSs and warm vertical compaction techniques in root canal treatment, evaluating the impact of heat on CSSs properties is essential, therefore this review aimed to present a qualitative synthesis of available in vitro studies assessing the impact of heat on the physical-chemical properties of CSSs.
Methods
Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis 2020 guidelines, a systematic advanced electronic search was performed in Scopus, Embase, Medline (via PubMed), Web of Science, and Cochrane databases in November 2023 and updated in April 2024. In vitro studies that evaluated the physical-chemical properties of CSSs were eligible. PRILE 2021 guidelines were used for the assessment of the risk of bias–included studies.
Results
The search identified a total of 6421 preliminary results and 10 studies were included for qualitative assessment. Eleven different physiochemical properties were assessed by the included studies. Setting time and flow were the most evaluated property among the studies. A qualitative synthesis of the evidence on each property is presented.
Conclusions
Based on the in vitro studies assessed in the present systematic review, results reveal that exposing CSSs to heat can accelerate their setting time, reduce their flow, and increase their film thickness. Concerns persist regarding solubility, viscosity, radiopacity, dimensional change, microhardness, porosity, and compressive strength, requiring further research. Certain CSSs, such as MTA Fillapex and Endosequence BC sealer HiFlow, show minimal changes under heat, making them potential candidates for warm filling techniques.
期刊介绍:
The Journal of Endodontics, the official journal of the American Association of Endodontists, publishes scientific articles, case reports and comparison studies evaluating materials and methods of pulp conservation and endodontic treatment. Endodontists and general dentists can learn about new concepts in root canal treatment and the latest advances in techniques and instrumentation in the one journal that helps them keep pace with rapid changes in this field.