Energy-efficient scheduling for parallel applications with reliability and time constraints on heterogeneous distributed systems

IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Systems Architecture Pub Date : 2024-05-06 DOI:10.1016/j.sysarc.2024.103173
Hongzhi Xu , Binlian Zhang , Chen Pan , Keqin Li
{"title":"Energy-efficient scheduling for parallel applications with reliability and time constraints on heterogeneous distributed systems","authors":"Hongzhi Xu ,&nbsp;Binlian Zhang ,&nbsp;Chen Pan ,&nbsp;Keqin Li","doi":"10.1016/j.sysarc.2024.103173","DOIUrl":null,"url":null,"abstract":"<div><p>Reliability is a crucial index of the system, and many safety-critical applications have reliability requirements and deadline constraints. In addition, in order to protect the environment and reduce system operating costs, it is necessary to minimize energy consumption as much as possible. This paper considers parallel applications on heterogeneous distributed systems and proposes two algorithms to minimize energy consumption for meeting the deadline and satisfying the reliability requirement of the applications. The first algorithm is called minimizing scheduling length while satisfying the reliability requirement (MSLSRR). It first transforms the reliability requirement of the application into the reliability requirement of the task and then assigns the task to the processor with the earliest finish time. Since the reliability generated by MSLSRR is often higher than the reliability requirement of the application, and the scheduling length is also less than the deadline, an algorithm called improving energy efficiency (IEE) is designed, which redefined the minimum reliability requirement for the task and applied dynamic voltage and frequency scaling (DVFS) technique for energy conservation. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume the least energy.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"152 ","pages":"Article 103173"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001103","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Reliability is a crucial index of the system, and many safety-critical applications have reliability requirements and deadline constraints. In addition, in order to protect the environment and reduce system operating costs, it is necessary to minimize energy consumption as much as possible. This paper considers parallel applications on heterogeneous distributed systems and proposes two algorithms to minimize energy consumption for meeting the deadline and satisfying the reliability requirement of the applications. The first algorithm is called minimizing scheduling length while satisfying the reliability requirement (MSLSRR). It first transforms the reliability requirement of the application into the reliability requirement of the task and then assigns the task to the processor with the earliest finish time. Since the reliability generated by MSLSRR is often higher than the reliability requirement of the application, and the scheduling length is also less than the deadline, an algorithm called improving energy efficiency (IEE) is designed, which redefined the minimum reliability requirement for the task and applied dynamic voltage and frequency scaling (DVFS) technique for energy conservation. The proposed algorithms are compared with existing algorithms by using real parallel applications. Experimental results demonstrate that the proposed algorithms consume the least energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构分布式系统上具有可靠性和时间限制的并行应用程序的节能调度
可靠性是系统的一项重要指标,许多安全关键型应用都有可靠性要求和期限限制。此外,为了保护环境和降低系统运行成本,有必要尽可能降低能耗。本文考虑了异构分布式系统上的并行应用,并提出了两种算法,以最小化能耗来满足应用的截止日期和可靠性要求。第一种算法称为在满足可靠性要求的同时最小化调度长度(MSLSRR)。它首先将应用的可靠性要求转化为任务的可靠性要求,然后将任务分配给完成时间最早的处理器。由于 MSLSRR 生成的可靠性往往高于应用程序的可靠性要求,而且调度长度也小于截止时间,因此设计了一种称为提高能效(IEE)的算法,该算法重新定义了任务的最低可靠性要求,并应用动态电压和频率缩放(DVFS)技术进行节能。通过使用真实的并行应用,将提出的算法与现有算法进行了比较。实验结果表明,提出的算法能耗最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Systems Architecture
Journal of Systems Architecture 工程技术-计算机:硬件
CiteScore
8.70
自引率
15.60%
发文量
226
审稿时长
46 days
期刊介绍: The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software. Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.
期刊最新文献
Non-interactive set intersection for privacy-preserving contact tracing NLTSP: A cost model for tensor program tuning using nested loop trees SAMFL: Secure Aggregation Mechanism for Federated Learning with Byzantine-robustness by functional encryption ZNS-Cleaner: Enhancing lifespan by reducing empty erase in ZNS SSDs Using MAST for modeling and response-time analysis of real-time applications with GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1