A review of explainable fashion compatibility modeling methods

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-05-11 DOI:10.1145/3664614
Karolina Selwon, Julian Szyma?ski
{"title":"A review of explainable fashion compatibility modeling methods","authors":"Karolina Selwon, Julian Szyma?ski","doi":"10.1145/3664614","DOIUrl":null,"url":null,"abstract":"<p>The paper reviews methods used in the fashion compatibility recommendation domain. We select methods based on reproducibility, explainability, and novelty aspects and then organize them chronologically and thematically. We presented general characteristics of publicly available datasets that are related to the fashion compatibility recommendation task. Finally, we analyzed the representation bias of datasets, fashion-based algorithms’ sustainability, and explainable model assessment. The paper describes practical problem explanations, methodologies, and published datasets that may serve as an inspiration for further research. The proposed structure of the survey organizes knowledge in the fashion recommendation domain and will be beneficial for those who want to learn the topic from scratch, expand their knowledge, or find a new field for research. Furthermore, the information included in this paper could contribute to developing an effective and ethical fashion-based recommendation system.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664614","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper reviews methods used in the fashion compatibility recommendation domain. We select methods based on reproducibility, explainability, and novelty aspects and then organize them chronologically and thematically. We presented general characteristics of publicly available datasets that are related to the fashion compatibility recommendation task. Finally, we analyzed the representation bias of datasets, fashion-based algorithms’ sustainability, and explainable model assessment. The paper describes practical problem explanations, methodologies, and published datasets that may serve as an inspiration for further research. The proposed structure of the survey organizes knowledge in the fashion recommendation domain and will be beneficial for those who want to learn the topic from scratch, expand their knowledge, or find a new field for research. Furthermore, the information included in this paper could contribute to developing an effective and ethical fashion-based recommendation system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可解释时尚兼容性建模方法综述
本文回顾了时尚兼容性推荐领域所使用的方法。我们根据可重复性、可解释性和新颖性等方面来选择方法,然后按时间顺序和主题来组织这些方法。我们介绍了与时尚兼容性推荐任务相关的公开可用数据集的一般特征。最后,我们分析了数据集的代表性偏差、基于时尚的算法的可持续性以及可解释模型评估。本文介绍了实际问题的解释、方法和已发布的数据集,这些数据集可作为进一步研究的灵感来源。本文提出的调查结构对时尚推荐领域的知识进行了梳理,对于那些想从头开始学习该主题、扩展知识面或寻找新的研究领域的人来说都将大有裨益。此外,本文所包含的信息还有助于开发有效且符合道德规范的时尚推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
A Survey on Security of UAV Swarm Networks: Attacks and Countermeasures Security and Privacy on Generative Data in AIGC: A Survey Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models Fog Computing Technology Research: A Retrospective Overview and Bibliometric Analysis Evaluation Methodologies in Software Protection Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1