Yimeng Liu, Ze Yu, Xuxiao Ye, Jinyuan Zhang, Xin Hao, Fei Gao, Jing Yu, Chunhua Zhou
{"title":"Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data.","authors":"Yimeng Liu, Ze Yu, Xuxiao Ye, Jinyuan Zhang, Xin Hao, Fei Gao, Jing Yu, Chunhua Zhou","doi":"10.1007/s11096-024-01729-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Venlafaxine dose regimens vary considerably between individuals, requiring personalized dosing.</p><p><strong>Aim: </strong>This study aimed to identify dose-related influencing factors of venlafaxine through real-world data analysis and to construct a personalized dose model using advanced artificial intelligence techniques.</p><p><strong>Method: </strong>We conducted a retrospective study on patients with depression treated with venlafaxine. Significant variables were selected through a univariate analysis. Subsequently, the predictive performance of seven models (XGBoost, LightGBM, CatBoost, GBDT, ANN, TabNet, and DT) was compared. The algorithm that demonstrated optimal performance was chosen to establish the dose prediction model. Model validation used confusion matrices and ROC analysis. Additionally, a dose subgroup analysis was conducted.</p><p><strong>Results: </strong>A total of 298 patients were included. TabNet was selected to establish the venlafaxine dose prediction model, which exhibited the highest performance with an accuracy of 0.80. The analysis identified seven crucial variables correlated with venlafaxine daily dose, including blood venlafaxine concentration, total protein, lymphocytes, age, globulin, cholinesterase, and blood platelet count. The area under the curve (AUC) for predicting venlafaxine doses of 75 mg, 150 mg, and 225 mg were 0.90, 0.85, and 0.90, respectively.</p><p><strong>Conclusion: </strong>We successfully developed a TabNet model to predict venlafaxine doses using real-world data. This model demonstrated substantial predictive accuracy, offering a personalized dosing regimen for venlafaxine. These findings provide valuable guidance for the clinical use of the drug.</p>","PeriodicalId":13828,"journal":{"name":"International Journal of Clinical Pharmacy","volume":" ","pages":"926-936"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Clinical Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11096-024-01729-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Aim: This study aimed to identify dose-related influencing factors of venlafaxine through real-world data analysis and to construct a personalized dose model using advanced artificial intelligence techniques.
Method: We conducted a retrospective study on patients with depression treated with venlafaxine. Significant variables were selected through a univariate analysis. Subsequently, the predictive performance of seven models (XGBoost, LightGBM, CatBoost, GBDT, ANN, TabNet, and DT) was compared. The algorithm that demonstrated optimal performance was chosen to establish the dose prediction model. Model validation used confusion matrices and ROC analysis. Additionally, a dose subgroup analysis was conducted.
Results: A total of 298 patients were included. TabNet was selected to establish the venlafaxine dose prediction model, which exhibited the highest performance with an accuracy of 0.80. The analysis identified seven crucial variables correlated with venlafaxine daily dose, including blood venlafaxine concentration, total protein, lymphocytes, age, globulin, cholinesterase, and blood platelet count. The area under the curve (AUC) for predicting venlafaxine doses of 75 mg, 150 mg, and 225 mg were 0.90, 0.85, and 0.90, respectively.
Conclusion: We successfully developed a TabNet model to predict venlafaxine doses using real-world data. This model demonstrated substantial predictive accuracy, offering a personalized dosing regimen for venlafaxine. These findings provide valuable guidance for the clinical use of the drug.
期刊介绍:
The International Journal of Clinical Pharmacy (IJCP) offers a platform for articles on research in Clinical Pharmacy, Pharmaceutical Care and related practice-oriented subjects in the pharmaceutical sciences.
IJCP is a bi-monthly, international, peer-reviewed journal that publishes original research data, new ideas and discussions on pharmacotherapy and outcome research, clinical pharmacy, pharmacoepidemiology, pharmacoeconomics, the clinical use of medicines, medical devices and laboratory tests, information on medicines and medical devices information, pharmacy services research, medication management, other clinical aspects of pharmacy.
IJCP publishes original Research articles, Review articles , Short research reports, Commentaries, book reviews, and Letters to the Editor.
International Journal of Clinical Pharmacy is affiliated with the European Society of Clinical Pharmacy (ESCP). ESCP promotes practice and research in Clinical Pharmacy, especially in Europe. The general aim of the society is to advance education, practice and research in Clinical Pharmacy .
Until 2010 the journal was called Pharmacy World & Science.