Tamoxifen upregulates the peroxisomal β-oxidation enzyme Enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase ameliorating hepatic lipid accumulation in mice
Ziling Zhang , Qinqin Yang , Ming Jin , Jie Wang , Yuanyuan Chai , Luyong Zhang , Zhenzhou Jiang , Qinwei Yu
{"title":"Tamoxifen upregulates the peroxisomal β-oxidation enzyme Enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase ameliorating hepatic lipid accumulation in mice","authors":"Ziling Zhang , Qinqin Yang , Ming Jin , Jie Wang , Yuanyuan Chai , Luyong Zhang , Zhenzhou Jiang , Qinwei Yu","doi":"10.1016/j.biocel.2024.106585","DOIUrl":null,"url":null,"abstract":"<div><p>Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid β-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid β-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid β-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid β-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids β-oxidation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524000761","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid β-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid β-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid β-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid β-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids β-oxidation.
他莫昔芬能上调过氧化物酶体β-氧化酶Enoyl CoA hydratase和3-羟基乙酰CoA hydratase,从而改善小鼠肝脏脂质积累。
据报道,他莫昔芬是一种雌激素受体调节剂,可减轻小鼠肝脏脂质积累,但其机制尚不清楚。过氧化物酶体脂肪酸β-氧化是长链脂肪酸超载的主要代谢途径。由于长链脂肪酸是肝脏脂质积累的原因之一,激活过氧化物酶体脂肪酸β-氧化可能是治疗代谢相关性脂肪肝的一种新策略。本研究以激活过氧化物酶体脂肪酸β氧化为基础,探讨了他莫昔芬抗肝脏脂质积累的机制。他莫昔芬能减少高脂饮食小鼠肝脏长链脂肪酸,缓解肝脏脂质积累,且无性别差异。在体外,他莫昔芬能保护原代肝细胞免受棕榈酸诱导的脂肪毒性的影响。从机理上讲,从肝脏分离的肝细胞的 RNA 序列显示,他莫昔芬激活了过氧化物酶体脂肪酸 β 氧化。烯酰 CoA 水合酶和 3- 羟基乙酰 CoA 水合酶的蛋白和 mRNA 表达在体内和体外均显著增加。在原代肝细胞中对烯酰 CoA 水合酶和 3- 羟基乙酰 CoA 水合酶进行小核糖核酸干扰,可消除他莫昔芬对脂质积累的治疗作用。总之,我们的研究结果表明,他莫昔芬可通过激活烯酰 CoA 水合酶和 3- 羟基乙酰 CoA 水合酶介导的过氧化物酶体脂肪酸 β 氧化作用来缓解高脂饮食小鼠的肝脏脂质蓄积。