Development of High Performance Thermoelectric Polymers via Doping or Dedoping Engineering

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2024-05-12 DOI:10.1002/asia.202400329
Yichen Xu, Jin Yan, Wei Zhou, Jianyong Ouyang
{"title":"Development of High Performance Thermoelectric Polymers via Doping or Dedoping Engineering","authors":"Yichen Xu,&nbsp;Jin Yan,&nbsp;Wei Zhou,&nbsp;Jianyong Ouyang","doi":"10.1002/asia.202400329","DOIUrl":null,"url":null,"abstract":"<p>It is of great significance to develop high-performance thermoelectric (TE) materials, because they can be used to harvest waste heat into electricity and there is abundant waste heat on earth. The conventional TE materials are inorganic semimetals or semiconductors like Bi<sub>2</sub>Te<sub>3</sub> and its derivatives. However, they have problems of high cost, scarce/toxic elements, high thermal conductivity, and poor mechanical flexibility. Organic TE materials emerged as the next-generation TE materials because of their merits including solution processability, low cost, abundant element, low intrinsic thermal conductivity, and high mechanical flexibility. Organic TE materials are mainly conducting polymers because of their high conductivity. Both the conductivity and Seebeck coefficient depend on the doping level, and they are interdependent. Hence, the TE properties of polymers can be improved through doping/dedoping engineering. There are three types of doping forms, oxidative (or reductive) doping, protonic acid doping, and charge transfer doping. Accordingly, they can be dedoped by different approaches. In this article, we review the methods to dope and dedope <i>p</i>-type and <i>n</i>-type TE polymers and the combination of doping and dedoping to optimize their TE properties. Secondary doping is also covered, since it can significantly enhance the conductivity of some TE polymers.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202400329","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is of great significance to develop high-performance thermoelectric (TE) materials, because they can be used to harvest waste heat into electricity and there is abundant waste heat on earth. The conventional TE materials are inorganic semimetals or semiconductors like Bi2Te3 and its derivatives. However, they have problems of high cost, scarce/toxic elements, high thermal conductivity, and poor mechanical flexibility. Organic TE materials emerged as the next-generation TE materials because of their merits including solution processability, low cost, abundant element, low intrinsic thermal conductivity, and high mechanical flexibility. Organic TE materials are mainly conducting polymers because of their high conductivity. Both the conductivity and Seebeck coefficient depend on the doping level, and they are interdependent. Hence, the TE properties of polymers can be improved through doping/dedoping engineering. There are three types of doping forms, oxidative (or reductive) doping, protonic acid doping, and charge transfer doping. Accordingly, they can be dedoped by different approaches. In this article, we review the methods to dope and dedope p-type and n-type TE polymers and the combination of doping and dedoping to optimize their TE properties. Secondary doping is also covered, since it can significantly enhance the conductivity of some TE polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂或掺杂工程开发高性能热电聚合物。
开发高性能热电(TE)材料意义重大,因为这些材料可用于将废热转化为电能,而地球上有大量的废热。传统的热电材料是无机半金属或半导体,如 Bi2Te3 及其衍生物。然而,这些材料存在成本高、元素危险/有毒、热传导率高和机械灵活性差等问题。有机 TE 材料具有溶液可加工性、成本低、元素丰富、固有热导率低和机械灵活性高等优点,因此成为下一代 TE 材料。有机 TE 材料主要是导电聚合物,因为它们具有高导电性。导电率和塞贝克系数都取决于掺杂水平,两者相互依存。因此,可以通过掺杂/掺杂工程改善聚合物的 TE 特性。掺杂形式有三种:氧化(或还原)掺杂、质子酸掺杂和电荷转移掺杂。因此,可以通过不同的方法对它们进行掺杂。本文综述了掺杂和掺杂 p 型和 n 型 TE 聚合物的方法,以及掺杂和掺杂相结合以优化 TE 特性的方法。由于二次掺杂能显著提高某些 TE 聚合物的导电性,因此本文也涉及二次掺杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
Engineering Trifluoromethyl Groups in Porous Coordination Polymers to Enhance Stability and Regulate Pore Window for Hexane Isomers Separation. NiIr nanowire assembles as an efficient electrocatalyst towards oxygen evolution reaction in both acid and alkaline media. Tailored Nanoarchitectures: MoS2/Graphene and MoS2/Graphene Oxide thin Films via Liquid-Liquid Interfacial Route. Photoluminescent and Electrochemiluminescent Detection of Fe3+ Using Cyclometalated Iridium Complexes via Fe3+-Catalyzed Hydrolysis. Atomically precise Fluorescent Gold Nanocluster as a barrier-permeable and brain-specific imaging probe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1