Introgression of Δ1-pyrroline-5-carboxylate synthetase (PgP5CS) confers enhanced resistance to abiotic stresses in transgenic tobacco.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-01 Epub Date: 2024-05-13 DOI:10.1007/s11248-024-00385-x
Gothandapani Sellamuthu, Avijit Tarafdar, Rahul Singh Jasrotia, Minakshi Chaudhary, Harinder Vishwakarma, Jasdeep C Padaria
{"title":"Introgression of Δ<sup>1</sup>-pyrroline-5-carboxylate synthetase (PgP5CS) confers enhanced resistance to abiotic stresses in transgenic tobacco.","authors":"Gothandapani Sellamuthu, Avijit Tarafdar, Rahul Singh Jasrotia, Minakshi Chaudhary, Harinder Vishwakarma, Jasdeep C Padaria","doi":"10.1007/s11248-024-00385-x","DOIUrl":null,"url":null,"abstract":"<p><p>Δ<sup>1</sup>-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO<sub>2</sub> concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-024-00385-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Δ1-pyrroline-5-carboxylate synthetase (P5CS) is one of the key regulatory enzymes involved in the proline biosynthetic pathway. Proline acts as an osmoprotectant, molecular chaperone, antioxidant, and regulator of redox homeostasis. The accumulation of proline during stress is believed to confer tolerance in plants. In this study, we cloned the complete CDS of the P5CS from pearl millet (Pennisetum glaucum (L.) R.Br. and transformed into tobacco. Three transgenic tobacco plants with single-copy insertion were analyzed for drought and heat stress tolerance. No difference was observed between transgenic and wild-type (WT) plants when both were grown in normal conditions. However, under heat and drought, transgenic plants have been found to have higher chlorophyll, relative water, and proline content, and lower malondialdehyde (MDA) levels than WT plants. The photosynthetic parameters (stomatal conductance, intracellular CO2 concentration, and transpiration rate) were also observed to be high in transgenic plants under abiotic stress conditions. qRT-PCR analysis revealed that the expression of the transgene in drought and heat conditions was 2-10 and 2-7.5 fold higher than in normal conditions, respectively. Surprisingly, only P5CS was increased under heat stress conditions, indicating the possibility of feedback inhibition. Our results demonstrate the positive role of PgP5CS in enhancing abiotic stress tolerance in tobacco, suggesting its possible use to increase abiotic stress-tolerance in crops for sustained yield under adverse climatic conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Δ1-吡咯啉-5-羧酸合成酶(PgP5CS)的导入增强了转基因烟草对非生物胁迫的抗性。
Δ1-吡咯啉-5-羧酸合成酶(P5CS)是参与脯氨酸生物合成途径的关键调节酶之一。脯氨酸是一种渗透保护剂、分子伴侣、抗氧化剂和氧化还原平衡调节剂。脯氨酸在胁迫期间的积累被认为能赋予植物耐受性。在这项研究中,我们从珍珠粟(Pennisetum glaucum (L.) R.Br.)中克隆了 P5CS 的完整 CDS,并将其转化到烟草中。分析了三个单拷贝插入的转基因烟草植株对干旱和热胁迫的耐受性。在正常条件下,转基因植株与野生型(WT)植株没有差异。但在高温和干旱条件下,转基因植株的叶绿素、相对水和脯氨酸含量比 WT 植株高,丙二醛(MDA)含量比 WT 植株低。qRT-PCR 分析显示,干旱和高温条件下转基因的表达量分别比正常条件下高 2-10 倍和 2-7.5 倍。令人惊讶的是,只有 P5CS 在热胁迫条件下的表达量有所增加,这表明可能存在反馈抑制作用。我们的研究结果证明了 PgP5CS 在提高烟草的非生物胁迫耐受性方面的积极作用,这表明它可能用于提高作物的非生物胁迫耐受性,从而在不利的气候条件下实现持续增产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1