Neriah Yan-Jie Tan , Yu Wang , Siaw-Wei Ang , Qiu-Jing Seah , Ming-Ming Sun , Rui-Qi Png , Peter K.H. Ho , Lay-Lay Chua
{"title":"Reliable unencapsulated Ag/Ag2S micro-reference electrodes for battery research and other applications in organic media","authors":"Neriah Yan-Jie Tan , Yu Wang , Siaw-Wei Ang , Qiu-Jing Seah , Ming-Ming Sun , Rui-Qi Png , Peter K.H. Ho , Lay-Lay Chua","doi":"10.1016/j.elecom.2024.107747","DOIUrl":null,"url":null,"abstract":"<div><p>Reliable electrochemical measurements depend on the availability of robust reference electrodes (RE) with well-defined potentials. While many reliable REs are known, they are not applicable in certain demanding media such as ionic liquids, nor in small confined spaces. Here, we describe the fabrication of a simple yet robust Ag/Ag<sub>2</sub>S micro-reference electrode (μ-RE) where a micron-thick Ag<sub>2</sub>S layer is formed by isothermal reaction with sulfur vapor. Scanning electron microscopy, X-ray photoemission spectroscopy, and spectroscopic ellipsometry characterization reveals that the optimal morphology corresponds to a slightly porous Ag<sub>2</sub>S film. We demonstrate that the Ag/Ag<sub>2</sub>S μ-RE can be operated in and cycled through a wide variety of polar organic solvents, including common protic solvents (EtOH), aprotic solvents (ACN, DMSO, NMP, DMF) and ionic liquids (EMIM-TFSI, BMP-TFSI), with short equilibration time (tens of seconds) and little drift (<20 mV), without requiring encapsulation, protective liquid junctions, nor special conditioning. A redox potential of 0.54 ± 0.02 V was obtained for ferrocene in acetonitrile, which places this RE at 0.08 V <em>vs</em> Ag/AgCl. We have also successfully embedded the electrode inside the CR2032 coin cell to perform cyclic voltammetry of battery materials. These results underpin the suitability of this simple micro-reference electrode for a wide variety of electrochemical measurements in demanding and/or miniaturized environments.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"165 ","pages":"Article 107747"},"PeriodicalIF":4.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000900/pdfft?md5=b79c3cfb6ab46dcd32af023516841583&pid=1-s2.0-S1388248124000900-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000900","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable electrochemical measurements depend on the availability of robust reference electrodes (RE) with well-defined potentials. While many reliable REs are known, they are not applicable in certain demanding media such as ionic liquids, nor in small confined spaces. Here, we describe the fabrication of a simple yet robust Ag/Ag2S micro-reference electrode (μ-RE) where a micron-thick Ag2S layer is formed by isothermal reaction with sulfur vapor. Scanning electron microscopy, X-ray photoemission spectroscopy, and spectroscopic ellipsometry characterization reveals that the optimal morphology corresponds to a slightly porous Ag2S film. We demonstrate that the Ag/Ag2S μ-RE can be operated in and cycled through a wide variety of polar organic solvents, including common protic solvents (EtOH), aprotic solvents (ACN, DMSO, NMP, DMF) and ionic liquids (EMIM-TFSI, BMP-TFSI), with short equilibration time (tens of seconds) and little drift (<20 mV), without requiring encapsulation, protective liquid junctions, nor special conditioning. A redox potential of 0.54 ± 0.02 V was obtained for ferrocene in acetonitrile, which places this RE at 0.08 V vs Ag/AgCl. We have also successfully embedded the electrode inside the CR2032 coin cell to perform cyclic voltammetry of battery materials. These results underpin the suitability of this simple micro-reference electrode for a wide variety of electrochemical measurements in demanding and/or miniaturized environments.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.