Guilin Zhuang , Hanzhong Liu , Zhimin Cao , Zhipeng Cui , Yifu Tang , Wenjun Zong
{"title":"An insight into the influence of precipitation phase on the surface quality in diamond turning of an Aluminium alloy","authors":"Guilin Zhuang , Hanzhong Liu , Zhimin Cao , Zhipeng Cui , Yifu Tang , Wenjun Zong","doi":"10.1016/j.ijmachtools.2024.104163","DOIUrl":null,"url":null,"abstract":"<div><p>Diamond turning is an effective technology for processing metal mirrors used in photoelectric communications, radar, and other fields. In diamond turning, the precipitated phase is an essential factor that influences the surface quality of the metal mirrors. However, in previous studies, the precipitation phase has typically been handled as a random variable in a surface morphology model to evaluate its influence on the surface roughness, instead of determining the formation mechanism and proposing suppression solutions. In this study, a new phenomenon is observed in the diamond turning of metal mirrors, that is, the micro diamond tool can reduce the protrusion of the precipitated phase under a small feed rate and improve the surface quality. Investigating the turning process using diamond tools with varying tool nose radii at small feed rates (<1 μm/r), the underlying transformation mechanism of the precipitation phase is determined with the advanced material characterization technologies. The growth of the precipitated phase with an increase in the tool nose radius is explained using the energy gradient theory. The results showed that the increased material strain on the machined surface decreased the activation energy of solute diffusion in the material, causing solute accumulation and precipitate phase growth. With a further increase of tool nose radius to around 1000 μm, the β'' phase breaks and rotates. The representative volume element method shows that when undergoing severe plastic deformation, dislocations and grain boundaries quickly aggregate and slide on the precipitated phase, which will lead to the fracture and rotation of β'' phase. These findings provide a theoretical basis for the development of highly smooth mirrors.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"199 ","pages":"Article 104163"},"PeriodicalIF":14.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089069552400049X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond turning is an effective technology for processing metal mirrors used in photoelectric communications, radar, and other fields. In diamond turning, the precipitated phase is an essential factor that influences the surface quality of the metal mirrors. However, in previous studies, the precipitation phase has typically been handled as a random variable in a surface morphology model to evaluate its influence on the surface roughness, instead of determining the formation mechanism and proposing suppression solutions. In this study, a new phenomenon is observed in the diamond turning of metal mirrors, that is, the micro diamond tool can reduce the protrusion of the precipitated phase under a small feed rate and improve the surface quality. Investigating the turning process using diamond tools with varying tool nose radii at small feed rates (<1 μm/r), the underlying transformation mechanism of the precipitation phase is determined with the advanced material characterization technologies. The growth of the precipitated phase with an increase in the tool nose radius is explained using the energy gradient theory. The results showed that the increased material strain on the machined surface decreased the activation energy of solute diffusion in the material, causing solute accumulation and precipitate phase growth. With a further increase of tool nose radius to around 1000 μm, the β'' phase breaks and rotates. The representative volume element method shows that when undergoing severe plastic deformation, dislocations and grain boundaries quickly aggregate and slide on the precipitated phase, which will lead to the fracture and rotation of β'' phase. These findings provide a theoretical basis for the development of highly smooth mirrors.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).