{"title":"The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: Contribution of ICESat-2 laser altimetry","authors":"Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, Heping Sun","doi":"10.5194/essd-2023-484","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Global marine gravity anomaly models are predominantly recovered from along-track radar altimeter data. While remarkable advancements has been achieved in gravity anomaly modelling, the quality of gravity anomaly model remains constrained by the absence of across-track geoid gradients and the reduction of radar altimeter data, particularly in coastal and high-latitudes regions. ICESat-2 laser altimetry operates three-pair laser beams with a small footprint and near-polar orbit, enabling the determination of across-track geoid gradients and providing more valid observations in certain regions. The ICESat-2 altimeter data processing method is presented including the determination of across-track geoid gradients and the combination of along/across-track geoid gradients. A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data using different method for determining each altimeter data error. The accuracy and spatial resolution of SDUST2022GRA is assessed by published global gravity anomaly models (DTU17, V32.1, NSOAS22) and available shipborne gravity measurements. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of others models. Moreover, in local coastal and high-latitude regions, SDUST2022GRA achieves an accuracy improvement of 0.16–0.24 mGal compared to others models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly better superior others models. These assessments suggests that SDUST2022GRA is a reliable global marine gravity anomaly model. By comparing SDUST2022GRA with incorporating ICESat-2 and SDUST2021GRA without ICESat-2, the percentage contribution of ICESat-2 to the improvement of gravity anomaly model accuracy is 13 % in the global ocean region, and it is increasing with an proportion of ICESat-2 altimeter data in high-latitude and coastal regions. The SDUST2022GRA are freely available at the site of https://doi.org/10.5281/zenodo.8337387 (Li et al., 2023).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"64 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-2023-484","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Global marine gravity anomaly models are predominantly recovered from along-track radar altimeter data. While remarkable advancements has been achieved in gravity anomaly modelling, the quality of gravity anomaly model remains constrained by the absence of across-track geoid gradients and the reduction of radar altimeter data, particularly in coastal and high-latitudes regions. ICESat-2 laser altimetry operates three-pair laser beams with a small footprint and near-polar orbit, enabling the determination of across-track geoid gradients and providing more valid observations in certain regions. The ICESat-2 altimeter data processing method is presented including the determination of across-track geoid gradients and the combination of along/across-track geoid gradients. A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data using different method for determining each altimeter data error. The accuracy and spatial resolution of SDUST2022GRA is assessed by published global gravity anomaly models (DTU17, V32.1, NSOAS22) and available shipborne gravity measurements. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of others models. Moreover, in local coastal and high-latitude regions, SDUST2022GRA achieves an accuracy improvement of 0.16–0.24 mGal compared to others models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly better superior others models. These assessments suggests that SDUST2022GRA is a reliable global marine gravity anomaly model. By comparing SDUST2022GRA with incorporating ICESat-2 and SDUST2021GRA without ICESat-2, the percentage contribution of ICESat-2 to the improvement of gravity anomaly model accuracy is 13 % in the global ocean region, and it is increasing with an proportion of ICESat-2 altimeter data in high-latitude and coastal regions. The SDUST2022GRA are freely available at the site of https://doi.org/10.5281/zenodo.8337387 (Li et al., 2023).
Earth System Science DataGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍:
Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.