Miguel A Hernandez-Lara, Joshua Richard, Deepak A Deshpande
{"title":"Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma.","authors":"Miguel A Hernandez-Lara, Joshua Richard, Deepak A Deshpande","doi":"10.1152/ajplung.00091.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP<sub>2</sub>) into inositol 1,4,5-trisphosphate (IP<sub>3</sub>) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP<sub>3</sub> via calcium activate distinct protein targets and regulate cellular functions. IP<sub>3</sub> signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP<sub>2</sub>. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L3-L18"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00091.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.